连接的一个有用的快捷方式是在Series和DataFrame实例的append方法。这些方法实际上早于concat()方法。 它们沿axis=0连接

#encoding:utf8
import pandas as pd
one = pd.DataFrame({
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5'],
'Marks_scored':[98,90,87,69,78]},
index=[1,2,3,4,5])
two = pd.DataFrame({
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5'],
'Marks_scored':[89,80,79,97,88]},
index=[1,2,3,4,5])
print("one:")
print(one)
print("two:")
print(two)
rs = pd.concat([one,two])
print("rs = pd.concat([one,two])")
print(rs)
print("rs = pd.concat([one,two],keys=['x','y'])")
rs = pd.concat([one,two],keys=['x','y'])
print(rs)
print("结果的索引是重复的; 每个索引重复。如果想要生成的对象必须遵循自己的索引,请将ignore_index设置为True:")
print("rs = pd.concat([one,two],keys=['x','y'],ignore_index=True)")
rs = pd.concat([one,two],keys=['x','y'],ignore_index=True)
print(rs)
print("观察,索引完全改变,键也被覆盖。如果需要沿axis=1添加两个对象,则会添加新列:")
rs = pd.concat([one,two],axis=1)
print(rs)
print("rs = one.append(two):")
rs = one.append(two)
print(rs)
print("append()函数也可以带多个对象:")
rs = one.append([two,one,two])
print(rs) D:\Download\python3\python3.exe D:/Download/pycharmworkspace/s.py
one:
Marks_scored Name subject_id
1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
two:
Marks_scored Name subject_id
1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5
rs = pd.concat([one,two])
Marks_scored Name subject_id
1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5
rs = pd.concat([one,two],keys=['x','y'])
Marks_scored Name subject_id
x 1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
y 1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5
结果的索引是重复的; 每个索引重复。如果想要生成的对象必须遵循自己的索引,请将ignore_index设置为True:
rs = pd.concat([one,two],keys=['x','y'],ignore_index=True)
Marks_scored Name subject_id
0 98 Alex sub1
1 90 Amy sub2
2 87 Allen sub4
3 69 Alice sub6
4 78 Ayoung sub5
5 89 Billy sub2
6 80 Brian sub4
7 79 Bran sub3
8 97 Bryce sub6
9 88 Betty sub5
观察,索引完全改变,键也被覆盖。如果需要沿axis=1添加两个对象,则会添加新列:
Marks_scored Name subject_id Marks_scored Name subject_id
1 98 Alex sub1 89 Billy sub2
2 90 Amy sub2 80 Brian sub4
3 87 Allen sub4 79 Bran sub3
4 69 Alice sub6 97 Bryce sub6
5 78 Ayoung sub5 88 Betty sub5
rs = one.append(two):
Marks_scored Name subject_id
1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5
append()函数也可以带多个对象:
Marks_scored Name subject_id
1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5
1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5 Process finished with exit code 0

pandas 级联 concat append的更多相关文章

  1. pandas的concat函数和append方法

    pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,keys=None, levels=None, nam ...

  2. 第十五节:pandas之concat()级联

    Pandas 提供了concat()函数可以轻松的将Series.DataFrame对象进行合并在一起. pandas.concat(obj , axis=0 , join="inner&q ...

  3. Pandas级联

    Pandas提供了各种工具(功能),可以轻松地将Series,DataFrame和Panel对象组合在一起. pd.concat(objs,axis=0,join='outer',join_axes= ...

  4. Pandas 合并 concat

    pandas处理多组数据的时候往往会要用到数据的合并处理,使用 concat是一种基本的合并方式.而且concat中有很多参数可以调整,合并成你想要的数据形式. 1.axis(合并方向):axis=0 ...

  5. pandas 之 concat

    本文摘自:http://pandas.pydata.org/pandas-docs/stable/merging.html 前提: ide: liuqian@ubuntu:~$ ipython 准备: ...

  6. Pandas的concat方法

    在此我用的concat作用是加入新的记录,存储数据来用过的,不知道数据量大时候,效率会怎样 # 使用pandas来保存数据 df1 = pd.DataFrame([poem], columns=['p ...

  7. 数据分析03 /基于pandas的数据清洗、级联、合并

    数据分析03 /基于pandas的数据清洗.级联.合并 目录 数据分析03 /基于pandas的数据清洗.级联.合并 1. 处理丢失的数据 2. pandas处理空值操作 3. 数据清洗案例 4. 处 ...

  8. Numpy&Pandas

    Numpy & Pandas 简介 此篇笔记参考来源为<莫烦Python> 运算速度快:numpy 和 pandas 都是采用 C 语言编写, pandas 又是基于 numpy, ...

  9. Pandas系列(十)-转换连接详解

    目录 1. 拼接 1.1 append 1.2 concat 2. 关联 2.1 merge 2.2 join 数据准备 # 导入相关库 import numpy as np import panda ...

随机推荐

  1. go标准库的学习-crypto/des

    参考:https://studygolang.com/pkgdoc 导入方式: import "crypto/des" des包实现了DES标准和TDEA算法,参见U.S. Fed ...

  2. Python基础视频

    链接:https://pan.baidu.com/s/1oPiS32sWVysuVAivtdFKnQ 密码私聊我

  3. nested exception is org.apache.ibatis.reflection.ReflectionExceptio

    org.mybatis.spring.MyBatisSystemException: nested exception is org.apache.ibatis.reflection.Reflecti ...

  4. POJ2387(dijkstra堆优化)

    Til the Cows Come Home Bessie is out in the field and wants to get back to the barn to get as much s ...

  5. Android BaseAdapter加载多个不同的Item布局时出现UncaughtException in Thread main java.lang.ArrayIndexOutOfBoundsException: length=15; index=15

    java.lang.ArrayIndexOutOfBoundsException: length=15; index=15 异常出现的场景:在做聊天界面时,需要插入表情,图片,文字,名片,还有几种较为 ...

  6. 浅谈Java泛型中的extends和super关键字

    泛型是在Java 1.5中被加入了,这里不讨论泛型的细节问题,这个在Thinking in Java第四版中讲的非常清楚,这里要讲的是super和extends关键字,以及在使用这两个关键字的时候为什 ...

  7. 5、数组&字符串&结构体&共用体&枚举

    程序中内存从哪里来 三种内存来源:栈(stack).堆(heap).数据区(.date): 栈(stack) 运行自动分配.自动回收,不需要程序员手工干预: 栈内存可以反复使用: 栈反复使用后,程序不 ...

  8. TCP/IP协议--TCP协议概括和TCP连接的建立和终止

    TCP提供一种面向连接的.可靠的字节流服务.面向连接指,发送和接收方在交换数据前必须建立一个TCP连接.顺便说下,一个TCP连接只有两方,因此广播和多播是不能应用于TCP的.字节流指,两个应用程序通过 ...

  9. MIPI接口资料汇总(精)

    一.介绍 1.MIPI联盟,即移动产业处理器接口(Mobile Industry Processor Interface 简称MIPI)联盟.MIPI(移动产业处理器接口)是MIPI联盟发起的为移动应 ...

  10. Sql Server插入数据并返回自增ID,@@IDENTITY,SCOPE_IDENTITY和IDENT_CURRENT的区别(转载)

    预备知识:SQL Server的IDENTITY关键字IDENTITY关键字代表的是一个函数,而不是identity属性.在access里边没有这个函数,所以在access不能用这个语句.语法:ide ...