连接的一个有用的快捷方式是在Series和DataFrame实例的append方法。这些方法实际上早于concat()方法。 它们沿axis=0连接

#encoding:utf8
import pandas as pd
one = pd.DataFrame({
'Name': ['Alex', 'Amy', 'Allen', 'Alice', 'Ayoung'],
'subject_id':['sub1','sub2','sub4','sub6','sub5'],
'Marks_scored':[98,90,87,69,78]},
index=[1,2,3,4,5])
two = pd.DataFrame({
'Name': ['Billy', 'Brian', 'Bran', 'Bryce', 'Betty'],
'subject_id':['sub2','sub4','sub3','sub6','sub5'],
'Marks_scored':[89,80,79,97,88]},
index=[1,2,3,4,5])
print("one:")
print(one)
print("two:")
print(two)
rs = pd.concat([one,two])
print("rs = pd.concat([one,two])")
print(rs)
print("rs = pd.concat([one,two],keys=['x','y'])")
rs = pd.concat([one,two],keys=['x','y'])
print(rs)
print("结果的索引是重复的; 每个索引重复。如果想要生成的对象必须遵循自己的索引,请将ignore_index设置为True:")
print("rs = pd.concat([one,two],keys=['x','y'],ignore_index=True)")
rs = pd.concat([one,two],keys=['x','y'],ignore_index=True)
print(rs)
print("观察,索引完全改变,键也被覆盖。如果需要沿axis=1添加两个对象,则会添加新列:")
rs = pd.concat([one,two],axis=1)
print(rs)
print("rs = one.append(two):")
rs = one.append(two)
print(rs)
print("append()函数也可以带多个对象:")
rs = one.append([two,one,two])
print(rs) D:\Download\python3\python3.exe D:/Download/pycharmworkspace/s.py
one:
Marks_scored Name subject_id
1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
two:
Marks_scored Name subject_id
1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5
rs = pd.concat([one,two])
Marks_scored Name subject_id
1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5
rs = pd.concat([one,two],keys=['x','y'])
Marks_scored Name subject_id
x 1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
y 1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5
结果的索引是重复的; 每个索引重复。如果想要生成的对象必须遵循自己的索引,请将ignore_index设置为True:
rs = pd.concat([one,two],keys=['x','y'],ignore_index=True)
Marks_scored Name subject_id
0 98 Alex sub1
1 90 Amy sub2
2 87 Allen sub4
3 69 Alice sub6
4 78 Ayoung sub5
5 89 Billy sub2
6 80 Brian sub4
7 79 Bran sub3
8 97 Bryce sub6
9 88 Betty sub5
观察,索引完全改变,键也被覆盖。如果需要沿axis=1添加两个对象,则会添加新列:
Marks_scored Name subject_id Marks_scored Name subject_id
1 98 Alex sub1 89 Billy sub2
2 90 Amy sub2 80 Brian sub4
3 87 Allen sub4 79 Bran sub3
4 69 Alice sub6 97 Bryce sub6
5 78 Ayoung sub5 88 Betty sub5
rs = one.append(two):
Marks_scored Name subject_id
1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5
append()函数也可以带多个对象:
Marks_scored Name subject_id
1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5
1 98 Alex sub1
2 90 Amy sub2
3 87 Allen sub4
4 69 Alice sub6
5 78 Ayoung sub5
1 89 Billy sub2
2 80 Brian sub4
3 79 Bran sub3
4 97 Bryce sub6
5 88 Betty sub5 Process finished with exit code 0

pandas 级联 concat append的更多相关文章

  1. pandas的concat函数和append方法

    pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,keys=None, levels=None, nam ...

  2. 第十五节:pandas之concat()级联

    Pandas 提供了concat()函数可以轻松的将Series.DataFrame对象进行合并在一起. pandas.concat(obj , axis=0 , join="inner&q ...

  3. Pandas级联

    Pandas提供了各种工具(功能),可以轻松地将Series,DataFrame和Panel对象组合在一起. pd.concat(objs,axis=0,join='outer',join_axes= ...

  4. Pandas 合并 concat

    pandas处理多组数据的时候往往会要用到数据的合并处理,使用 concat是一种基本的合并方式.而且concat中有很多参数可以调整,合并成你想要的数据形式. 1.axis(合并方向):axis=0 ...

  5. pandas 之 concat

    本文摘自:http://pandas.pydata.org/pandas-docs/stable/merging.html 前提: ide: liuqian@ubuntu:~$ ipython 准备: ...

  6. Pandas的concat方法

    在此我用的concat作用是加入新的记录,存储数据来用过的,不知道数据量大时候,效率会怎样 # 使用pandas来保存数据 df1 = pd.DataFrame([poem], columns=['p ...

  7. 数据分析03 /基于pandas的数据清洗、级联、合并

    数据分析03 /基于pandas的数据清洗.级联.合并 目录 数据分析03 /基于pandas的数据清洗.级联.合并 1. 处理丢失的数据 2. pandas处理空值操作 3. 数据清洗案例 4. 处 ...

  8. Numpy&Pandas

    Numpy & Pandas 简介 此篇笔记参考来源为<莫烦Python> 运算速度快:numpy 和 pandas 都是采用 C 语言编写, pandas 又是基于 numpy, ...

  9. Pandas系列(十)-转换连接详解

    目录 1. 拼接 1.1 append 1.2 concat 2. 关联 2.1 merge 2.2 join 数据准备 # 导入相关库 import numpy as np import panda ...

随机推荐

  1. Python Tornado集成JSON Web Token方式登录

    本项目github地址 前端测试模板如下: Tornado restful api 项目 项目结构如下: 项目组织类似于django,由独立的app模块构成. 登录接口设计 模式:post -> ...

  2. BSGS-Junior·大步小步算法

    本文原载于:http://www.orchidany.cf/2019/02/06/BSGS-junior/#more \(\rm{0x01}\) \(\mathcal{Preface}\) \(\rm ...

  3. 2-关于单片机通信数据传输(中断接收,大小端,IEEE754浮点型格式,共用体,空闲中断,环形队列)

    上一篇链接 http://www.cnblogs.com/yangfengwu/p/8628219.html 先说明一点这种方式,不光对于单片机类的,,对于上位机接收数据同样适用----不骗人的,自己 ...

  4. HDMI接口的PCB设计

    1.定义 HDMI的全称是“HighDefinitionMultimedia”,即:高清多媒体接口. HDMI在引脚上和DVI兼容,只是采用了不同的封装.与DVI相比.HDMI可以传输数字音频信号,并 ...

  5. springbootAdmin+eureka集群+swagger

    请移步githubb下载源码.知识共享.(https://github.com/yivvonllh) 或者直接git下载(https://github.com/yivvonllh/spring-clo ...

  6. 微软下一代Web前端技术Blazor(C#编译为WebAssembly)

    W3C Web标准化机构在制定下一代的网页技术WebAssembly.目前版本是1.0,主流浏览器的最新版本都已经支持.其特点是浏览器可以执行编译后的二进制程序,不需要像之前的程序,浏览器下载Java ...

  7. python3 installed 安装 pip3

    curl -sS https://bootstrap.pypa.io/get-pip.py | sudo python3

  8. [Spark][Hive][Python][SQL]Spark 读取Hive表的小例子

    [Spark][Hive][Python][SQL]Spark 读取Hive表的小例子$ cat customers.txt 1 Ali us 2 Bsb ca 3 Carls mx $ hive h ...

  9. SequenceFile文件

    SequenceFile文件是Hadoop用来存储二进制形式的key-value对而设计的一种平面文件(Flat File).目前,也有不少人在该文件的基础之上提出了一些HDFS中小文件存储的解决方案 ...

  10. P4099 [HEOI2013]SAO

    P4099 [HEOI2013]SAO 贼板子有意思的一个题---我()竟然没看题解 有一张连成树的有向图,球拓扑序数量. 树形dp,设\(f[i][j]\)表示\(i\)在子树中\(i\)拓扑序上排 ...