XGBOOST应用及调参示例
该示例所用的数据可从该链接下载,提取码为3y90,数据说明可参考该网页。该示例的“模型调参”这一部分引用了这篇博客的步骤。
数据前处理
- 导入数据
import pandas as pd
import numpy as np
from sklearn.cross_validation import train_test_split
### Load data
### Split the data to train and test sets
data = pd.read_csv('data/loan/Train.csv', encoding = "ISO-8859-1")
train, test = train_test_split(data,train_size=0.7,random_state=123,stratify=data['Disbursed'])
### Check number of nulls in each feature column
nulls_per_column = train.isnull().sum()
print(nulls_per_column) - 将特征拆分成数值型和种类型
### Drop the useless columns
train_1 = train.drop(['ID','Lead_Creation_Date','LoggedIn'],axis=1)
### Split the columns to numerical and categorical
category_cols = train_1.columns[train_1.dtypes==object].tolist()
category_cols.remove('DOB')
category_cols.append('Var4')
numeric_cols = list(set(train_1.columns)-set(category_cols)) - 分析并处理种类型特征
### explore the categorical columns
for v in category_cols:
print('Ratio of missing value for variable {0}: {1}'.format(v,nulls_per_column[v]/train_1.shape[0]))
print('-----------------------------------------------------------')
counts = dict()
for v in category_cols:
print('\nFrequency count for variable %s'%v)
counts[v] = train_1[v].value_counts()
print(counts[v])
### merge the cities that counts<200
merge_city = [c for c in counts['City'].index if counts['City'][c]<200]
train_1['City'] = train_1['City'].apply(lambda x: 'others' if x in merge_city else x)
### merge the salary accounts that counts<100
merge_sa = [c for c in counts['Salary_Account'].index if counts['Salary_Account'][c]<100]
train_1['Salary_Account'] = train_1['Salary_Account'].apply(lambda x: 'others' if x in merge_sa else x)
### merge the sources that counts<100
merge_sr = [c for c in counts['Source'].index if counts['Source'][c]<100]
train_1['Source'] = train_1['Source'].apply(lambda x: 'others' if x in merge_sr else x)
### impute the missing value
train_1['City'].fillna('Missing',inplace=True)
train_1['Salary_Account'].fillna('Missing',inplace=True)
### delete the column Employer_Name since too many categories
train_2 = train_1.drop('Employer_Name',axis=1) - 分析并处理数值型特征
### Explore the numerical columns
for v in numeric_cols:
print('Ratio of missing value for variable {0}: {1}'.format(v,nulls_per_column[v]/train_2.shape[0]))
print('-----------------------------------------------------------')
for v in numeric_cols:
print('\nStatistical summary for variable %s'%v)
print(train_2[v].describe())
### Create Age column:
train_2['Age'] = train_2['DOB'].apply(lambda x: 118 - int(x[-2:]))
### High proportion missing so create a new variable stating whether this is missing or not:
train_2['Loan_Amount_Submitted_Missing'] = train_2['Loan_Amount_Submitted'].apply(lambda x: 1 if pd.isnull(x) else 0)
train_2['Loan_Tenure_Submitted_Missing'] = train_2['Loan_Tenure_Submitted'].apply(lambda x: 1 if pd.isnull(x) else 0)
train_2['EMI_Loan_Submitted_Missing'] = train_2['EMI_Loan_Submitted'].apply(lambda x: 1 if pd.isnull(x) else 0)
train_2['Interest_Rate_Missing'] = train_2['Interest_Rate'].apply(lambda x: 1 if pd.isnull(x) else 0)
train_2['Processing_Fee_Missing'] = train_2['Processing_Fee'].apply(lambda x: 1 if pd.isnull(x) else 0)
### Impute the missing value
train_2['Existing_EMI'].fillna(train_2['Existing_EMI'].median(), inplace=True)
train_2['Loan_Amount_Applied'].fillna(train_2['Loan_Amount_Applied'].median(),inplace=True)
train_2['Loan_Tenure_Applied'].fillna(train_2['Loan_Tenure_Applied'].median(),inplace=True)
### Drop original columns
train_3 = train_2.drop(['DOB','Loan_Amount_Submitted','Loan_Tenure_Submitted','EMI_Loan_Submitted', \
'Interest_Rate','Processing_Fee'],axis=1) - One-Hot encoding
from sklearn.preprocessing import LabelEncoder
dropped_columns = ['ID','Lead_Creation_Date','LoggedIn','Employer_Name','DOB','Loan_Amount_Submitted', \
'Loan_Tenure_Submitted','EMI_Loan_Submitted','Interest_Rate','Processing_Fee']
le = LabelEncoder()
var_to_encode = list(set(category_cols)-set(dropped_columns))
for col in var_to_encode:
train_3[col] = le.fit_transform(train_3[col])
### pd.get_dummies can also be used directly without LabelEncoder
train_3 = pd.get_dummies(train_3, columns=var_to_encode)
模型调参
- 建立基础模型并使用early_stop调整迭代次数
import xgboost as xgb
import matplotlib.pyplot as plt
from sklearn import metrics
### base model
target = 'Disbursed'
predictors = [x for x in train_3.columns if x!=target]
xgb1 = xgb.XGBClassifier(learning_rate=0.1, n_estimators=1000, max_depth=5, min_child_weight=1, gamma=0, \
subsample=0.8, colsample_bytree=0.8, objective= 'binary:logistic', nthread=4, seed=27)
### use early_stop in xgb.cv
def get_n_estimators(alg, dtrain, predictors, target, cv_folds=5, early_stopping_rounds=50):
xgb_param = alg.get_xgb_params()
xgtrain = xgb.DMatrix(dtrain[predictors], label=dtrain[target])
cvresult = xgb.cv(xgb_param, xgtrain, num_boost_round=alg.get_params()['n_estimators'], nfold=cv_folds, \
metrics='auc', early_stopping_rounds=early_stopping_rounds, stratified=True)
alg.set_params(n_estimators=cvresult.shape[0])
#Print model report:
print("\nModel Report")
print("Set n_estimators to {0}".format(cvresult.shape[0]))
print(cvresult.tail(1)['test-auc-mean'])
#Fit the algorithm on the data
alg.fit(dtrain[predictors], dtrain[target], eval_metric='auc')
#Feature importance
feat_imp = pd.Series(alg.get_booster().get_fscore()).sort_values(ascending=False)
feat_imp.plot(kind='bar', title='Feature Importances', figsize=(20,6))
plt.ylabel('Feature Importance Score')
return
### get n_estimators
get_n_estimators(xgb1, train_3, predictors, target) - Tune max_depth and min_child_weight
from sklearn.model_selection import GridSearchCV
### optimal: {'max_depth':5,'min_child_weight':5}
param_test1 = {'max_depth':range(3,10,2),'min_child_weight':range(1,6,2)}
alg = xgb.XGBClassifier(learning_rate=0.1, n_estimators=141, max_depth=5, min_child_weight=1, gamma=0, \
subsample=0.8, colsample_bytree=0.8, objective= 'binary:logistic', nthread=4, seed=27)
gsearch1 = GridSearchCV(estimator = alg, param_grid = param_test1, scoring='roc_auc', n_jobs=4, iid=False, cv=5)
gsearch1.fit(train_3[predictors],train_3[target])
print(gsearch1.best_params_)
print(gsearch1.best_score_)
### optimal: {'max_depth':4,'min_child_weight':6}
param_test2 = {'max_depth':[4,5,6],'min_child_weight':[4,5,6]}
alg = xgb.XGBClassifier(learning_rate=0.1, n_estimators=141, max_depth=5, min_child_weight=5, gamma=0, \
subsample=0.8, colsample_bytree=0.8, objective= 'binary:logistic', nthread=4, seed=27)
gsearch2 = GridSearchCV(estimator = alg, param_grid = param_test2, scoring='roc_auc', n_jobs=4, iid=False, cv=5)
gsearch2.fit(train_3[predictors],train_3[target])
print(gsearch2.best_params_)
print(gsearch2.best_score_)
### optimal: {'min_child_weight':6}
param_test2b = {'min_child_weight':[6,8,10,12]}
alg = xgb.XGBClassifier(learning_rate=0.1, n_estimators=141, max_depth=4, min_child_weight=6, gamma=0, \
subsample=0.8, colsample_bytree=0.8, objective= 'binary:logistic', nthread=4, seed=27)
gsearch2b = GridSearchCV(estimator = alg, param_grid = param_test2b, scoring='roc_auc', n_jobs=4, iid=False, cv=5)
gsearch2b.fit(train_3[predictors],train_3[target])
print(gsearch2b.best_params_)
print(gsearch2b.best_score_) - Tune gamma
### optimal: {'gamma':0.2}
param_test3 = {'gamma':[i/10.0 for i in range(0,5)]}
alg = xgb.XGBClassifier(learning_rate=0.1, n_estimators=141, max_depth=4, min_child_weight=6, gamma=0, \
subsample=0.8, colsample_bytree=0.8, objective= 'binary:logistic', nthread=4, seed=27)
gsearch3 = GridSearchCV(estimator = alg, param_grid = param_test3, scoring='roc_auc', n_jobs=4, iid=False, cv=5)
gsearch3.fit(train_3[predictors],train_3[target])
print(gsearch3.best_params_)
print(gsearch3.best_score_)
### get n_estimators
xgb2 = xgb.XGBClassifier(learning_rate=0.1, n_estimators=1000, max_depth=4, min_child_weight=6, gamma=0.2, \
subsample=0.8, colsample_bytree=0.8, objective= 'binary:logistic', nthread=4, seed=27)
get_n_estimators(xgb2, train_3, predictors, target) - Tune subsample and colsample_bytree
### optimal: {'colsample_bytree': 0.7, 'subsample': 0.7}
param_test4 = {'subsample':[i/10.0 for i in range(6,11)], 'colsample_bytree':[i/10.0 for i in range(6,11)]}
alg = xgb.XGBClassifier(learning_rate=0.1, n_estimators=142, max_depth=4, min_child_weight=6, gamma=0.2, \
subsample=0.8, colsample_bytree=0.8, objective= 'binary:logistic', nthread=4, seed=27)
gsearch4 = GridSearchCV(estimator = alg, param_grid = param_test4, scoring='roc_auc', n_jobs=4, iid=False, cv=5)
gsearch4.fit(train_3[predictors],train_3[target])
print(gsearch4.best_params_)
print(gsearch4.best_score_)
### optimal: {'colsample_bytree': 0.75, 'subsample': 0.7}
param_test5 = {'subsample':[i/100.0 for i in range(65,80,5)], 'colsample_bytree':[i/100.0 for i in range(65,80,5)]}
alg = xgb.XGBClassifier(learning_rate=0.1, n_estimators=142, max_depth=4, min_child_weight=6, gamma=0.2, \
subsample=0.7, colsample_bytree=0.7, objective= 'binary:logistic', nthread=4, seed=27)
gsearch5 = GridSearchCV(estimator = alg, param_grid = param_test5, scoring='roc_auc', n_jobs=4, iid=False, cv=5)
gsearch5.fit(train_3[predictors],train_3[target])
print(gsearch5.best_params_)
print(gsearch5.best_score_) - Tune reg_alpha
### optimal: {'reg_alpha': 0.01}
param_test6 = {'reg_alpha':[0, 1e-5, 1e-2, 0.1, 1, 100]}
alg = xgb.XGBClassifier(learning_rate=0.1, n_estimators=142, max_depth=4, min_child_weight=6, gamma=0.2, \
subsample=0.7, colsample_bytree=0.75, objective= 'binary:logistic', nthread=4, seed=27)
gsearch6 = GridSearchCV(estimator = alg, param_grid = param_test6, scoring='roc_auc', n_jobs=4, iid=False, cv=5)
gsearch6.fit(train_3[predictors],train_3[target])
print(gsearch6.best_params_)
print(gsearch6.best_score_)
### optimal: {'reg_alpha': 0.01}
param_test7 = {'reg_alpha':[0.001, 0.005, 0.01, 0.05]}
alg = xgb.XGBClassifier(learning_rate=0.1, n_estimators=142, max_depth=4, min_child_weight=6, gamma=0.2, reg_alpha=0.01, \
subsample=0.7, colsample_bytree=0.75, objective= 'binary:logistic', nthread=4, seed=27)
gsearch7 = GridSearchCV(estimator = alg, param_grid = param_test7, scoring='roc_auc', n_jobs=4, iid=False, cv=5)
gsearch7.fit(train_3[predictors],train_3[target])
print(gsearch7.best_params_)
print(gsearch7.best_score_) - Tune reg_lambda
### optimal: {'reg_lambda': 1}
param_test8 = {'reg_lambda':[0, 0.01, 0.1, 1, 10, 100]}
alg = xgb.XGBClassifier(learning_rate=0.1, n_estimators=142, max_depth=4, min_child_weight=6, gamma=0.2, reg_alpha=0.01, \
subsample=0.7, colsample_bytree=0.75, objective= 'binary:logistic', nthread=4, seed=27)
gsearch8 = GridSearchCV(estimator = alg, param_grid = param_test8, scoring='roc_auc', n_jobs=4, iid=False, cv=5)
gsearch8.fit(train_3[predictors],train_3[target])
print(gsearch8.best_params_)
print(gsearch8.best_score_)
### optimal: {'reg_lambda': 1}
param_test9 = {'reg_lambda':[0.5, 0.7, 1, 3, 5]}
alg = xgb.XGBClassifier(learning_rate=0.1, n_estimators=142, max_depth=4, min_child_weight=6, gamma=0.2, reg_alpha=0.01, \
subsample=0.7, colsample_bytree=0.75, objective= 'binary:logistic', nthread=4, seed=27)
gsearch9 = GridSearchCV(estimator = alg, param_grid = param_test9, scoring='roc_auc', n_jobs=4, iid=False, cv=5)
gsearch9.fit(train_3[predictors],train_3[target])
print(gsearch9.best_params_)
print(gsearch9.best_score_)
### get n_estimators
xgb3 = xgb.XGBClassifier(learning_rate=0.1, n_estimators=1000, max_depth=4, min_child_weight=6, gamma=0.2, \
reg_alpha=0.01, reg_lambda=1, subsample=0.7, colsample_bytree=0.75, \
objective= 'binary:logistic', nthread=4, seed=27)
get_n_estimators(xgb3, train_3, predictors, target) - Reduce learning rate
xgb4 = xgb.XGBClassifier(learning_rate=0.01, n_estimators=5000, max_depth=4, min_child_weight=6, gamma=0.2, \
reg_alpha=0.01, reg_lambda=1, subsample=0.7, colsample_bytree=0.75, \
objective= 'binary:logistic', nthread=4, seed=27)
get_n_estimators(xgb4, train_3, predictors, target)
根据上述过程构建完整的Pipeline
import pandas as pd
import numpy as np
import xgboost as xgb
import matplotlib.pyplot as plt
from sklearn import metrics
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import Imputer, FunctionTransformer, LabelBinarizer
from sklearn_pandas import DataFrameMapper, CategoricalImputer
from sklearn.pipeline import Pipeline data = pd.read_csv('Train.csv', encoding = "ISO-8859-1")
train, test = train_test_split(data,train_size=0.7,random_state=123,stratify=data['Disbursed']) target_raw = 'Disbursed'
predictors_raw = [col for col in train.columns if col!=target_raw]
train_X, train_y = train[predictors_raw], train[target_raw] category_cols = train_X.columns[train_X.dtypes==object].tolist()
category_cols.remove('DOB')
category_cols.append('Var4')
numeric_cols = list(set(train_X.columns)-set(category_cols))
numeric_cols = numeric_cols+['Age', 'Loan_Amount_Submitted_Missing', 'Loan_Tenure_Submitted_Missing', \
'EMI_Loan_Submitted_Missing', 'Interest_Rate_Missing', 'Processing_Fee_Missing'] counts = dict()
for v in category_cols:
counts[v] = train_X[v].value_counts()
non_merge_city = [c for c in counts['City'].index if counts['City'][c]>=200]
non_merge_sa = [c for c in counts['Salary_Account'].index if counts['Salary_Account'][c]>=100]
non_merge_sr = [c for c in counts['Source'].index if counts['Source'][c]>=100] dropped_columns = ['ID','Lead_Creation_Date','LoggedIn','Employer_Name','DOB','Loan_Amount_Submitted', \
'Loan_Tenure_Submitted','EMI_Loan_Submitted','Interest_Rate','Processing_Fee'] # Function Transform
def preprocess(X):
X['City'] = X['City'].apply(lambda x: 'others' if x not in non_merge_city and not pd.isnull(x) else x)
X['Salary_Account'] = X['Salary_Account'].apply(lambda x: 'others' if x not in non_merge_sa and not pd.isnull(x) else x)
X['Source'] = X['Source'].apply(lambda x: 'others' if x not in non_merge_sr and not pd.isnull(x) else x) X['Age'] = X['DOB'].apply(lambda x: 118 - int(x[-2:])) X['Loan_Amount_Submitted_Missing'] = X['Loan_Amount_Submitted'].apply(lambda x: 1 if pd.isnull(x) else 0)
X['Loan_Tenure_Submitted_Missing'] = X['Loan_Tenure_Submitted'].apply(lambda x: 1 if pd.isnull(x) else 0)
X['EMI_Loan_Submitted_Missing'] = X['EMI_Loan_Submitted'].apply(lambda x: 1 if pd.isnull(x) else 0)
X['Interest_Rate_Missing'] = X['Interest_Rate'].apply(lambda x: 1 if pd.isnull(x) else 0)
X['Processing_Fee_Missing'] = X['Processing_Fee'].apply(lambda x: 1 if pd.isnull(x) else 0) return X.drop(dropped_columns, axis=1) # Apply numeric imputer
numeric_imputer = [([feature], Imputer(strategy="median")) for feature in numeric_cols if feature not in dropped_columns]
# Apply categorical imputer and one-hot encode
category_imputer = [(feature, [CategoricalImputer(strategy='constant', fill_value='Missing'),LabelBinarizer()]) \
for feature in category_cols if feature not in dropped_columns]
# Combine the numeric and categorical transformations
numeric_categorical_union = DataFrameMapper(numeric_imputer+category_imputer,input_df=True,df_out=True) # Tuned Classifier
tuned_xgb = xgb.XGBClassifier(learning_rate=0.01, n_estimators=1480, max_depth=4, min_child_weight=6, gamma=0.2, \
reg_alpha=0.01, reg_lambda=1, subsample=0.7, colsample_bytree=0.75, \
objective= 'binary:logistic', nthread=4, seed=27) # Create full pipeline
pipeline = Pipeline([("preprocessor", FunctionTransformer(preprocess, validate=False)), \
("featureunion", numeric_categorical_union), ("classifier", tuned_xgb)])
pipeline.fit(train_X, train_y) #Feature importance
feat_imp = pd.Series(pipeline.named_steps['classifier'].get_booster().get_fscore()).sort_values(ascending=False)
feat_imp.plot(kind='bar', title='Feature Importances', figsize=(20,6))
plt.ylabel('Feature Importance Score') # individual prediction
print(pipeline.predict_proba(test.iloc[[1]][predictors_raw]))
# test data predictions
# AUC Score (Test): 0.8568
predprob=pipeline.predict_proba(test[predictors_raw])[:,1]
print("AUC Score (Test): %f" % metrics.roc_auc_score(test[target_raw], predprob))
XGBOOST应用及调参示例的更多相关文章
- XGBoost 重要参数(调参使用)
XGBoost 重要参数(调参使用) 数据比赛Kaggle,天池中最常见的就是XGBoost和LightGBM. 模型是在数据比赛中尤为重要的,但是实际上,在比赛的过程中,大部分朋友在模型上花的时间却 ...
- xgboost/gbdt在调参时为什么树的深度很少就能达到很高的精度?
问题: 用xgboost/gbdt在在调参的时候把树的最大深度调成6就有很高的精度了.但是用DecisionTree/RandomForest的时候需要把树的深度调到15或更高.用RandomFore ...
- 【Python机器学习实战】决策树与集成学习(七)——集成学习(5)XGBoost实例及调参
上一节对XGBoost算法的原理和过程进行了描述,XGBoost在算法优化方面主要在原损失函数中加入了正则项,同时将损失函数的二阶泰勒展开近似展开代替残差(事实上在GBDT中叶子结点的最优值求解也是使 ...
- xgboost参数及调参
常规参数General Parameters booster[default=gbtree]:选择基分类器,可以是:gbtree,gblinear或者dart.gbtree和draf基于树模型,而gb ...
- xgboost的遗传算法调参
遗传算法适应度的选择: 机器学习的适应度可以是任何性能指标 —准确度,精确度,召回率,F1分数等等.根据适应度值,我们选择表现最佳的父母(“适者生存”),作为幸存的种群. 交配: 存活下来的群体中的父 ...
- Xgboost调参总结
一.参数速查 参数分为三类: 通用参数:宏观函数控制. Booster参数:控制每一步的booster(tree/regression). 学习目标参数:控制训练目标的表现. 二.回归 from xg ...
- xgboost使用调参
欢迎关注博主主页,学习python视频资源 https://blog.csdn.net/q383700092/article/details/53763328 调参后结果非常理想 from sklea ...
- xgboost的sklearn接口和原生接口参数详细说明及调参指点
from xgboost import XGBClassifier XGBClassifier(max_depth=3,learning_rate=0.1,n_estimators=100,silen ...
- xgboost入门与实战(实战调参篇)
https://blog.csdn.net/sb19931201/article/details/52577592 xgboost入门与实战(实战调参篇) 前言 前面几篇博文都在学习原理知识,是时候上 ...
随机推荐
- #14 Python模块
前言 前面的文章中,有许多地方都用到了Python的模块,这个到底是个什么神奇的东西呢?让我们来一起盘它! 一.什么是模块 在前几节中,我们已经接触了一些模块:math.random.time等,它们 ...
- cvte前端笔试后的js原型总结
最近实习生招聘已经开始了,昨天晚上也终于迎来了第一场笔试,笔试的公司是cvte,笔试题总共27题,25道不定项还有2道编程题,虽然出的都是前端题,但是因为之前没有好好准备,还是很多做的不是很好o(╥﹏ ...
- Umbraco 资源推荐
Umbraco 社区 Umbraco 官方社区.找到人们谈论当前的 Umbraco 主题的最好方法是通过 Twitter.Umbraco 也知道他们很多的聚会和节日在世界各地举行.Umbraco 的开 ...
- 导入本地的oracle数据库文件
1. 创建表空间 create tablespace charge_zang datafile 'F:\app\zang\oradata\orcl\charge_zang.dbf' size 50M ...
- C#实现RSA加密与解密、签名与认证(转)
一.RSA简介 RSA公钥加密算法是1977年由Ron Rivest.Adi Shamirh和LenAdleman在(美国麻省理工学院)开发的.RSA取名来自开发他们三者的名字.RSA是目前最有影响力 ...
- Centos7 firewalld 基本使用
Centos7 的防火墙 firewalld比较常见 简单介绍使用 详细介绍链接推荐: https://blog.csdn.net/buster_zr/article/details/806049 ...
- MVC中返回json数据的两种方式
MVC里面如果直接将数据返回到前端页面,我们常用的方式就是用return view(): 那么我不想直接用razor语法,毕竟razor这玩意儿实在是太难记了,还不如写ajax对接来得舒服不是 那么我 ...
- 微信公共号:CTO技术总监
业务价值胜过技术策略: 战略目标胜过具体项目的效益: 内置的互操作胜过定制的集成: 共享服务胜过特定目标的实现: 灵活性胜过优化: 不断演进地提炼胜过在最开始追求完美!
- 纯CSS绘制mac代码
1.效果图 2.代码 <!doctype html> <html lang="en"> <head> <meta charset=&quo ...
- vue实现双向绑定的简单原理: defineProperty
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...