洛谷P2619 Tree I
经典的k条白边MST
带权二分,按照套路我们要选择尽量少的白边。
#include <cstdio>
#include <algorithm> const int N = ; int D; struct Edge {
int x, y, val, col;
inline bool operator <(const Edge &w) const {
if(val - D * col == w.val - D * w.col) {
return col < w.col;
}
return val - D * col < w.val - D * w.col;
}
}edge[N]; int n, m, k, ans; namespace ufs{
int fa[N];
int find(int x) {
if(x == fa[x]) {
return x;
}
return fa[x] = find(fa[x]);
}
inline void merge(int x, int y) {
fa[find(x)] = find(y);
return;
}
inline bool check(int x, int y) {
return find(x) == find(y);
}
inline void clear() {
for(int i = ; i <= n; i++) {
fa[i] = i;
}
return;
}
} inline int check(int mid) {
ufs::clear();
D = mid;
ans = ;
int cnt = ;
std::sort(edge + , edge + m + );
for(int i = ; i <= m; i++) {
if(!ufs::check(edge[i].x, edge[i].y)) {
cnt += edge[i].col;
ans += edge[i].val - D * edge[i].col;
ufs::merge(edge[i].x, edge[i].y);
}
}
return cnt;
} int main() {
scanf("%d%d%d", &n, &m, &k);
for(int i = ; i <= m; i++) {
scanf("%d%d%d%d", &edge[i].x, &edge[i].y, &edge[i].val, &edge[i].col);
edge[i].x++;
edge[i].y++;
edge[i].col ^= ;
} int l = -, r = ;
while(l < r) {
int mid = (l + r + ) >> ;
int t = check(mid);
//printf("[%d %d] mid = %d cnt = %d \n", l, r, mid, t);
if(t == k) {
printf("%d\n", ans + k * mid);
return ;
}
if(t < k) {
l = mid;
}
else {
r = mid - ;
}
}
check(r);
printf("%d\n", ans + k * r);
return ;
}
AC代码
洛谷P2619 Tree I的更多相关文章
- 洛谷P2619 [国家集训队2]Tree I(带权二分,Kruscal,归并排序)
洛谷题目传送门 给一个比较有逼格的名词--WQS二分/带权二分/DP凸优化(当然这题不是DP). 用来解决一种特定类型的问题: 有\(n\)个物品,选择每一个都会有相应的权值,需要求出强制选\(nee ...
- 点分治模板(洛谷P4178 Tree)(树分治,树的重心,容斥原理)
推荐YCB的总结 推荐你谷ysn等巨佬的详细题解 大致流程-- dfs求出当前树的重心 对当前树内经过重心的路径统计答案(一条路径由两条由重心到其它点的子路径合并而成) 容斥减去不合法情况(两条子路径 ...
- Poj1741/洛谷P4718 Tree(点分治)
题面 有多组数据:Poj 无多组数据:洛谷 题解 点分治板子题,\(calc\)的时候搞一个\(two\ pointers\)扫一下统计答案就行了. #include <cmath> #i ...
- 题解【洛谷P2619】[国家集训队2]Tree I
题目描述 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有\(need\)条白色边的生成树. 题目保证有解. 输入输出格式 输入格式 第一行\(V,E,need\)分别表示点数,边 ...
- Solution -「国家集训队」「洛谷 P2619」Tree I
\(\mathcal{Description}\) Link. 给一个 \(n\) 个点 \(m\) 条边的带权无向图,边有权值和黑白颜色,求恰选出 \(K\) 条白边构成的最小生成树. ...
- 洛谷P4178 Tree (点分治)
题目描述 给你一棵TREE,以及这棵树上边的距离.问有多少对点它们两者间的距离小于等于K 输入输出格式 输入格式: N(n<=40000) 接下来n-1行边描述管道,按照题目中写的输入 接下 ...
- POJ1471 Tree/洛谷P4178 Tree
Tree P4178 Tree 点分治板子. 点分治就是直接找树的重心进行暴力计算,每次树的深度不会超过子树深度的\(\frac{1}{2}\),计算完就消除影响,找下一个重心. 所以伪代码: voi ...
- 洛谷P4178 Tree (算竞进阶习题)
点分治 还是一道点分治,和前面那道题不同的是求所有距离小于等于k的点对. 如果只是等于k,我们可以把重心的每个子树分开处理,统计之后再合并,这样可以避免答案重复(也就是再同一个子树中出现路径之和为k的 ...
- 洛谷P1501 Tree II
LCT 还是LCT的板子,下放标记和那道线段树2一样,先放乘..之前用char忘记getchar,调了好久... 注意开long long!! #include <bits/stdc++.h&g ...
随机推荐
- 做完小程序项目、老板给我加了5k薪资~
大家好,我是苏南,今天要给大家分享的是最近公司做的一个小程序项目,过程中的一些好的总结和遇到的坑,希望能给其他攻城狮带来些许便利,更希望能做完之后老板给你加薪- 今天是中秋节的第一天,假日的清晨莫名的 ...
- 从源码的角度再看 React JS 中的 setState
在这一篇文章中,我们从源码的角度再次理解下 setState 的更新机制,供深入研究学习之用. 在上一篇手记「深入理解 React JS 中的 setState」中,我们简单地理解了 React 中 ...
- MRT与MRTS工具官宣退休,推荐使用HEG
今天错误的删除搞丢了之前下载的MRT与MRTS工具,浏览Modis官网下载时发现找不到了,后来在其官网上发现了这则通知,原来早已停止更新的MRT这次彻底退修了.通知原文如下~~~ The downlo ...
- 老牌阅读器nook2刷机整理
kindle肯定是现在大多数人了解电纸书这个产品的开端,也给我留下了一段美好的回忆,不折腾,不死机,官方书城让人省心不少,不过作为半个折腾爱好者,kindle显然不符合我的理念,遂慢慢入了安卓电纸书的 ...
- 撰写POPUSH需求文档
不当家不知柴米贵,撰写了正规的软件需求文档才知道软件工程的复杂性 感谢@洪宇@王需@江林楠下午的加班加点,五个人正闷在406B奋斗中,加油!
- #个人作业Week2——结对编程对象代码复审
General 代码能够正确运行,能够正确生成指定数量的题目和答案,并且能够对给出的题目和答案文件进行比对,输出结果. 代码没有非常复杂的逻辑,比较容易理解,但是在缺少注释的情况下有部分代码需要较长时 ...
- Linux内核分析——第七章 链接
第七章——链接 1.链接是将各种代码和数据部分收集起来并组合成为一个单一文件的过程,这个文件可被加载到存储器并执行. 2.链接可以执行于编译时,加载时,运行时. 7.1编译器驱动程序 1.大多数编译系 ...
- 软件工程——HelloWorld
#include main(){ printf("Hello World\n"); }
- 结构化分析(SA)
1.什么叫模型?我觉得它的关键字:抽象 重要特征 降低复杂度. 2.软件设计的方法 分类:面向功能~,面向对象的设计. 面向数据流的方法是在结构化分析中提到的. 哦~ 3.面向数据流的结构化分析 特点 ...
- 广商博客冲刺第六七天new
第四五天沖刺傳送門 第一版的網頁已經放到 云服務器(估計快到期了) 傳送門. (不怎么會玩服務器啊..求指教..目前問題如下: 1.我的電腦mysql密碼跟服務器的密碼不一樣..上傳的時候要把代碼里面 ...