HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)

Description

A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.

The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.

They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.

Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.

Input

The input file will contain one or more test cases. The first line of each test case contains an integer n,

representing the number of different blocks in the following data set. The maximum value for n is 30.

Each of the next n lines contains three integers representing the values xi, yi and zi.

Input is terminated by a value of zero (0) for n.

Output

For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".

Sample Input

1

10 20 30

2

6 8 10

5 5 5

7

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

5

31 41 59

26 53 58

97 93 23

84 62 64

33 83 27

0

Sample Output

Case 1: maximum height = 40

Case 2: maximum height = 21

Case 3: maximum height = 28

Case 4: maximum height = 342

Http

HDU:https://vjudge.net/problem/HDU-1069

ZOJ:https://vjudge.net/problem/ZOJ-1093

Source

最长路径

题目大意

给出若干个三维块,每一种三维块都有无数个。一个块能叠在另一块上当且仅当其边长能严格小于那一块。现在求能叠起来的最高高度

解决思路

对于每一个块,我们把其拆成三个二维矩形,并附带一个权值,矩形的长和宽分别是块的两个棱长,而附带的权值就是剩余的棱长。然后我们枚举每一对矩形i,j,看一看j是否能叠在i上,如果可以,则连边i->j,权值就是矩形j的附加权值。

相信你已经看出来了,这里我们要求的就是这个图中的最长路。

但是因为起点没有固定,所以我们建立一个超级起点0,连上所有的矩形,边权就是矩形的附加权值。

话说本来想用本题练一练Dijkstra+Heap的,但后来发现求最长路时并不满足先出的一定不再修改(为什么呢?看看样例一你就明白了),于是变成了Dijkstra+Heap+允许重入队,就等于spfa+Heap了。。。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std; const int maxN=40*4;
const int maxM=maxN*maxN*2;
const int inf=2147483647; class Queue_Data//优先队列中的元素,u是点,dist是权值
{
public:
int u,dist;
}; bool operator < (Queue_Data A,Queue_Data B)
{
return A.dist<B.dist;
} class Edge
{
public:
int u,v,w;
}; int n,m;
int cnt;
int Node[maxN];
int Head[maxN];
int Next[maxM];
Edge E[maxM];
int Dist[maxN];
bool vis[maxN];
int Cube[maxN][4];
priority_queue<Queue_Data> Q;//用优先队列模拟堆 void Add_Edge(int u,int v,int w); int main()
{
int cas=0;
while (cin>>n)
{
if (n==0)
break;
cnt=0;
memset(Head,-1,sizeof(Head));
for (int i=1;i<=n;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
if (b<a)//为了方便后面比较,我们这里保证a<=b<=c
swap(a,b);
if (c<a)
swap(a,c);
if (c<b)
swap(b,c);
Cube[i][1]=a;//Cube[i][1]和Cube[i][2]分别是矩形的长和宽,并且保证Cube[i][1]<=Cube[i][2],Cube[i][3]就是矩形的附加权值(即高度)
Cube[i][2]=b;
Cube[i][3]=c; Cube[i+n][1]=b;
Cube[i+n][2]=c;
Cube[i+n][3]=a; Cube[i+n+n][1]=a;
Cube[i+n+n][2]=c;
Cube[i+n+n][3]=b;
}
/*
for (int i=1;i<=n*3;i++)
cout<<Cube[i][1]<<" "<<Cube[i][2]<<endl;
cout<<endl;
//*/
for (int i=1;i<=n*3;i++)
for (int j=1;j<=n*3;j++)
if ((Cube[i][1]>Cube[j][1])&&(Cube[i][2]>Cube[j][2]))//因为上面已经保证了Cube[i][1]<=Cube[i][2]所以这里简化了判断
Add_Edge(i,j,Cube[j][3]);
for (int i=1;i<=n*3;i++)//因为不知道起点,所以都连上超级起点0,或者你也可以把所有点的初值都置好然后全部丢入优先队列
Add_Edge(0,i,Cube[i][3]);
/*
for (int i=1;i<=cnt;i++)
cout<<E[i].u<<" "<<E[i].v<<" "<<E[i].w<<endl;
//*/
memset(vis,0,sizeof(vis));
memset(Dist,0,sizeof(Dist));
Q.push((Queue_Data){0,0});
int Ans=0;
do//求解最长路
{
int u=Q.top().u;
int di=Q.top().dist;
Q.pop();
if (vis[u]==1)
continue;
vis[u]=1;
//cout<<"take:"<<u<<" "<<di<<endl;
Ans=max(Ans,di);//一边求就一边更新答案
for (int i=Head[u];i!=-1;i=Next[i])
{
int v=E[i].v;
if (di+E[i].w>Dist[v])
{
vis[v]=0;//这里要允许重入队
Dist[v]=di+E[i].w;
Q.push((Queue_Data){v,Dist[v]});
}
}
}
while (!Q.empty());
/*
for (int i=1;i<=n*3;i++)
cout<<Dist[i]<<" ";
cout<<endl;
//*/
printf("Case %d: maximum height = %d\n",++cas,Ans);//注意输出格式
}
return 0;
} void Add_Edge(int u,int v,int w)
{
cnt++;
Next[cnt]=Head[u];
Head[u]=cnt;
E[cnt].u=u;
E[cnt].v=v;
E[cnt].w=w;
return;
}

为什么这一道题和上一题一样也在[kuangbin带你飞]的专题十二 基础DP1里?我很迷茫……

可能最短路径硬扯也能说是动态规划思想吧

HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)的更多相关文章

  1. ZOJ 1093 Monkey and Banana (LIS)解题报告

    ZOJ  1093   Monkey and Banana  (LIS)解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...

  2. 随手练——ZOJ 1093 Monkey and Banana(动态规划)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=93 一堆科学家研究猩猩的智商,给他M种长方体,每种N个. 然后,将一个 ...

  3. HDU 1069 Monkey and Banana(二维偏序LIS的应用)

    ---恢复内容开始--- Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  4. HDU 1069 Monkey and Banana (DP)

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  5. (最大上升子序列)Monkey and Banana -- hdu -- 1069

    http://acm.hdu.edu.cn/showproblem.php?pid=1069      Monkey and Banana Time Limit:1000MS     Memory L ...

  6. hdu 1069 动规 Monkey and Banana

     Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u ...

  7. HDU 1069—— Monkey and Banana——————【dp】

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  8. HDU 1069 Monkey and Banana dp 题解

    HDU 1069 Monkey and Banana 纵有疾风起 题目大意 一堆科学家研究猩猩的智商,给他M种长方体,每种N个.然后,将一个香蕉挂在屋顶,让猩猩通过 叠长方体来够到香蕉. 现在给你M种 ...

  9. HDU 1069 dp最长递增子序列

    B - Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I6 ...

随机推荐

  1. C#实现.Net对邮件进行DKIM签名和验证,支持附件,发送邮件签名后直接投递到对方服务器(无需己方邮件服务器)

    项目地址 https://github.com/xiangyuecn/DKIM-Smtp-csharp 主要支持 对邮件进行DKIM签名,支持带附件 对整个邮件内容(.eml文件)的DKIM签名进行验 ...

  2. Linux mount 命令

    mount 命令用来挂载文件系统.其基本命令格式为:mount -t type [-o options] device dirdevice:指定要挂载的设备,比如磁盘.光驱等.dir:指定把文件系统挂 ...

  3. 关键字搜索:jQuery过滤器插件fastLiveFilter||显示结果条数

    引用js库 <script src="jquery-1.6.4.min.js"></script> <script src="jquery. ...

  4. sql-server安装

    ubuntu安装sql-server https://docs.microsoft.com/zh-cn/sql/linux/quickstart-install-connect-ubuntu?view ...

  5. 归并排序O(nlogn)

    先分治再合并 代码 #include<bits/stdc++.h> using namespace std; #define ll long long int a[1000],t[1000 ...

  6. 个人博客作业Week2 是否需要有代码规范

    问题:是否需要有代码规范 对于是否需要有代码规范,请考虑下列论点并反驳/支持: 1.这些规范都是官僚制度下产生的浪费大家的编程时间.影响人们开发效率, 浪费时间的东西. 2.我是个艺术家,手艺人,我有 ...

  7. linux 下gcc 编译结构体问题

    最近在linux 学习c语言的编程,发现好多原来在vs 上的在linux 都编译不过去,今天就遇到了一个问题就是结构体的编译的问题, 结构体大概的定义是 struct Node{ int a; int ...

  8. jdbcTemplete(转)

    文章来源:http://blog.csdn.net/dyllove98/article/details/7772463 JdbcTemplate主要提供以下五类方法: execute方法:可以用于执行 ...

  9. 关于五子棋游戏java版

    一 题目简介:关于五子棋游戏 二 源码的github链接   https://github.com/marry1234/test/blob/master/五子棋游戏 三.所设计的模块测试用例.测试结果 ...

  10. 软件工程(四)数据流图DFD

    结构化分析中,常用到数据模型为实体关系图,功能模型是数据流图 DFD 可以认为,一个基于计算机的信息处理系统由数据流和一系列的转换构成,这些转换将输入数据流变换为输出数据流.数据流图就是用来刻画数据流 ...