HDU 5608 - function
套路题
图片来自:
https://blog.csdn.net/V5ZSQ/article/details/52116285
杜教筛思想,根号递归下去。
先搞出前缀和g(n)=∑f(i)
然后寻求递归。∑g(n/i)=常数
这一步要运用给出的f(i)的关系,干掉f
具体:
向枚举约数转化,不断交换求和,交换统计贡献的部分。通过数学意义变成枚举约数
然后类似杜教筛即可
f的前1000000项,调和级数枚举约数减去贡献
#include<bits/stdc++.h>
#define reg register int
#define il inline
#define fi first
#define se second
#define mk(a,b) make_pair(a,b)
#define numb (ch^'0')
using namespace std;
typedef long long ll;
template<class T>il void rd(T &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
template<class T>il void ot(T x){x/?ot(x/):putchar(x%+'');}
template<class T>il void prt(T a[],int st,int nd){for(reg i=st;i<=nd;++i) printf("%lld ",a[i]);putchar('\n');} namespace Miracle{
const int mod=1e9+;
const int M=+;
int t,n;
int f[M];
int qm(int x,int y){
int ret=;while(y){
if(y&) ret=(ll)ret*x%mod;x=(ll)x*x%mod;y>>=;
}return ret;
}
int ad(int x,int y){
return x+y>=mod?x+y-mod:x+y;
}
void sieve(int n){
for(reg i=;i<=n;++i) f[i]=(ll)(i-)*(i-)%mod;
for(reg i=;i<=n;++i){
for(reg j=i+i;j<=n;j+=i){
f[j]=ad(f[j],mod-f[i]);
}
}
for(reg i=;i<=n;++i) f[i]=ad(f[i],f[i-]);
}
map<int,int>mp;
int inv6;
int sol(int n){
if(n<=M-) return f[n];
if(mp.find(n)!=mp.end()) return mp[n];
ll ret=(ll)(n-)*n%mod*(*n-)%mod*inv6%mod;
ret=ad(ret,mod-(ll)n*(n-)/%mod);
for(reg i=,x=;i<=n;i=x+){
x=(n/(n/i));
ret=ad(ret,mod-(ll)(x-i+)*sol(n/i)%mod);
}
return mp[n]=ret;
}
int main(){
sieve(M-);
inv6=qm(,mod-);
rd(t);
while(t--){
rd(n);printf("%d\n",sol(n));
}
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2019/3/8 11:16:20
*/
HDU 5608 - function的更多相关文章
- HDU 5608 function [杜教筛]
HDU 5608 function 题意:数论函数满足\(N^2-3N+2=\sum_{d|N} f(d)\),求前缀和 裸题-连卷上\(1\)都告诉你了 预处理\(S(n)\)的话反演一下用枚举倍数 ...
- ●HDU 5608 function
题链: http://acm.hdu.edu.cn/showproblem.php?pid=5608 题解: 莫比乌斯反演,杜教筛 已知$$N^2-3N+2=\sum_{d|N} f(d)$$ 多次询 ...
- [HDU 5608]Function(莫比乌斯反演 + 杜教筛)
题目描述 有N2−3N+2=∑d∣Nf(d)N^2-3N+2=\sum_{d|N} f(d)N2−3N+2=∑d∣Nf(d) 求∑i=1Nf(i)\sum_{i=1}^{N} f(i)∑i=1Nf ...
- HDU 5608 function(莫比乌斯反演 + 杜教筛)题解
题意: 已知\(N^2-3N+2=\sum_{d|N}f(d)\),求\(\sum_{i=1}^nf(i) \mod 1e9+7\),\(n\leq1e9\) 思路: 杜教筛基础题? 很显然这里已经设 ...
- HDU 6038 - Function | 2017 Multi-University Training Contest 1
/* HDU 6038 - Function [ 置换,构图 ] 题意: 给出两组排列 a[], b[] 问 满足 f(i) = b[f(a[i])] 的 f 的数目 分析: 假设 a[] = {2, ...
- 洛谷P1464 Function HDU P1579 Function Run Fun
洛谷P1464 Function HDU P1579 Function Run Fun 题目描述 对于一个递归函数w(a,b,c) 如果a≤0 or b≤0 or c≤0就返回值11. 如果a> ...
- HDU 5875 Function 【倍增】 (2016 ACM/ICPC Asia Regional Dalian Online)
Function Time Limit: 7000/3500 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total ...
- 2017 Multi-University Training Contest - Team 1 1006&&HDU 6038 Function【DFS+数论】
Function Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total ...
- HDU 5875 Function 优先队列+离线
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5875 Function Time Limit: 7000/3500 MS (Java/Others) ...
随机推荐
- 【知识整理】这可能是最好的RxJava 2.x 入门教程(一)
一.前言 这可能是最好的RxJava 2.x入门教程系列专栏 文章链接: 这可能是最好的RxJava 2.x 入门教程(完结版)[强力推荐] 这可能是最好的RxJava 2.x 入门教程(一) 这可能 ...
- 计算机网络什么是OSI7层模型、TCP/IP4层模型理解
模型图解 应用层 就是最顶层的.通常指的应用程序初始走的协议比如有 TFTP,HTTP,SNMP,FTP,SMTP,DNS,Telnet 表示层 主要对数据应用层的数据包进行加密 会话层 建立.管理. ...
- Jvm 10 升级笔记
移除了 JPEGCodec https://www.cnblogs.com/liaolongjun/p/6878359.html
- Centos7.4安装kvm虚拟机(使用virt-manager管理)
之前介绍了使用WebVirtMgr或Openstack来部署及管理kvm虚拟机,下面简单介绍centos7.4下使用virt-manager部署及管理kvm虚拟机的做法: 0)KVM是什么 KVM(K ...
- MongoDB集群运维笔记
前面的文章介绍了MongoDB副本集和分片集群的做法,下面对MongoDB集群的日常维护操作进行小总结: MongDB副本集故障转移功能得益于它的选举机制.选举机制采用了Bully算法,可以很方便从分 ...
- M1阶段个人总结
经过4周的开发,我们团队的第一阶段已经结束了. 这一个月来我由于其他事情较多,所以开发的工作主要交给了另外的三名同学. 我主要负责制定代码规范和工程结构,通过github来跟进项目进度,提供一些技术支 ...
- #个人作业Week2——结对编程对象代码复审
General 代码能够正确运行,能够正确生成指定数量的题目和答案,并且能够对给出的题目和答案文件进行比对,输出结果. 代码没有非常复杂的逻辑,比较容易理解,但是在缺少注释的情况下有部分代码需要较长时 ...
- 关于singleton的几个实现
public class Singleton { public static void main(String[] args) { Singleton s1 = Singleton.getInstan ...
- GitHub18
兴趣是最好的老师,HelloGitHub 就是帮你找到兴趣! 简介 分享 GitHub 上有趣.入门级的开源项目. 这是一个面向编程新手.热爱编程.对开源社区感兴趣 人群的月刊,月刊的内容包括:各种编 ...
- 命令行批量修改IP并ping测试
@echo off set ip=0 :beginset /a ip=%ip%+1netsh interface ip set address "本地连接" static 172. ...