传送门:Problem 3678

https://www.cnblogs.com/violet-acmer/p/9769406.html

难点:

  题意理解+构图

题意:

  有n个点 v[0,2......,n-1](v[i]值为0或1),边(a[i],b[i])间的权值为c[i],现在给出它们之间的一些逻辑运算的结果(比如c[1]=a[1] & b[1] = 1),逻辑运算有AND OR XOR三种,问是否存在一种满足所有条件的取值方案。

构图难点:

  如果类似 u v 1 AND这样的数据,说明u,v的1必须都选,那么就把u的0连向u的1,v的0连向v的1,这样的目的是使得推出矛盾;

  同理 u v 0 or 这样的数据,说明u,v的0必须都选,那么就把u的1连向u的0,v的1连向v的0,这样的目的是使得推出矛盾;

AC代码:

 #include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
using namespace std;
#define pb push_back
#define mem(a,b) (memset(a,b,sizeof a))
const int maxV=1e3+;
const int maxE=1e6+; int n,m;
int a[maxE],b[maxE],c[maxE];
char op[];
int scc[*maxV];
bool vis[*maxV];
vector<int >vs;
vector<int >G[*maxV],rG[*maxV];
void addEdge(int u,int v)
{
G[u].pb(v);
rG[v].pb(u);
}
void Dfs(int u)
{
vis[u]=true;
for(int i=;i < G[u].size();++i)
{
int to=G[u][i];
if(!vis[to])
Dfs(to);
}
vs.pb(u);
}
void rDfs(int u,int k)
{
vis[u]=true;
scc[u]=k;
for(int i=;i < rG[u].size();++i)
{
int to=rG[u][i];
if(!vis[to])
rDfs(to,k);
}
}
void SCC()
{
mem(vis,false);
vs.clear();
for(int i=;i < *n;++i)
if(!vis[i])
Dfs(i);
mem(vis,false);
int k=;
for(int i=vs.size()-;i >= ;--i)
{
int to=vs[i];
if(!vis[to])
rDfs(to,++k);
}
}
void Init()
{
for(int i=;i < maxV;++i)
G[i].clear(),rG[i].clear();
}
int main()
{
scanf("%d%d",&n,&m);
Init();
for(int i=;i <= m;++i)
{
scanf("%d%d%d%s",a+i,b+i,c+i,op);
switch (op[])
{
case 'A':
if(c[i] == )
addEdge(a[i],b[i]+n),addEdge(b[i],a[i]+n);
else
addEdge(a[i]+n,a[i]),addEdge(b[i]+n,b[i]);
break;
case 'O':
if(c[i] == )
addEdge(a[i]+n,b[i]),addEdge(b[i]+n,a[i]);
else
addEdge(a[i],a[i]+n),addEdge(b[i],b[i]+n);
break;
case 'X':
if(c[i] == )
{
addEdge(a[i],b[i]+n),addEdge(b[i]+n,a[i]);
addEdge(a[i]+n,b[i]),addEdge(b[i],a[i]+n);
}
else
{
addEdge(a[i],b[i]),addEdge(b[i],a[i]);
addEdge(a[i]+n,b[i]+n),addEdge(b[i]+n,a[i]+n);
}
break;
}
}
SCC();
bool flag=false;
for(int i=;i < n;++i)
if(scc[i] == scc[i+n])
flag=true;
if(flag)
printf("NO\n");
else
printf("YES\n"); }

poj 3678(SCC+2-SAT)的更多相关文章

  1. Katu Puzzle POJ - 3678 (2 - sat)

    有N个变量X1X1~XNXN,每个变量的可能取值为0或1. 给定M个算式,每个算式形如 XaopXb=cXaopXb=c,其中 a,b 是变量编号,c 是数字0或1,op 是 and,or,xor 三 ...

  2. HDU 3062 && HDU 1824 && POJ 3678 && BZOJ 1997 2-SAT

    一条边<u,v>表示u选那么v一定被选. #include <iostream> #include <cstring> #include <cstdio> ...

  3. POJ 3678 Katu Puzzle(2-SAT,合取范式大集合)

    Katu Puzzle Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9987   Accepted: 3741 Descr ...

  4. poj 3678 Katu Puzzle(Two Sat)

    题目链接:http://poj.org/problem?id=3678 代码: #include<cstdio> #include<cstring> #include<i ...

  5. POJ 3678 Katu Puzzle(2 - SAT) - from lanshui_Yang

    Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...

  6. Katu Puzzle POJ - 3678(水2 - sat)

    题意: 有n个未知量,m对未知量之间的关系,判断是否能求出所有的未知量且满足这些关系 解析: 关系建边就好了 #include <iostream> #include <cstdio ...

  7. poj 3678 Katu Puzzle(2-sat)

    Description Katu Puzzle ≤ c ≤ ). One Katu ≤ Xi ≤ ) such that for each edge e(a, b) labeled by op and ...

  8. POJ 3678 Katu Puzzle 2-SAT 强连通分量 tarjan

    http://poj.org/problem?id=3678 给m条连接两个点的边,每条边有一个权值0或1,有一个运算方式and.or或xor,要求和这条边相连的两个点经过边上的运算后的结果是边的权值 ...

  9. 基础但是很重要的2-sat POJ 3678

    http://poj.org/problem?id=3678 题目大意:就是给你n个点,m条边,每个点都可以取值为0或者1,边上都会有一个符号op(op=xor or and三种)和一个权值c.然后问 ...

随机推荐

  1. Mysql主从同步(1) - 概念和原理介绍 以及 主从/主主模式 部署记录

    Mysql复制概念Mysql内建的复制功能是构建大型高性能应用程序的基础, 将Mysql数据分布到多个系统上,这种分布机制是通过将Mysql某一台主机数据复制到其它主机(slaves)上,并重新执行一 ...

  2. centos6.5虚拟机安装后,没有iptables配置文件

    openstack环境里安装centos6.5系统的虚拟机,安装好后,发现没有/etc/syscofig/iptables防火墙配置文件. 解决办法如下: [root@kvm-server005 ~] ...

  3. rem、em、px、pt及网站字体大小设配

    rem:相对的只是HTML根元素字体尺寸; em:相对于当前对象内文本的字体尺寸(值不是固定且继承父级元素的字体大小); px像素(Pixel):对于显示器屏幕分辨率而言的; pt:point,是印刷 ...

  4. HDOJ2010_水仙花数

    一道水题.一直出现Output Limit Exceeded的原因是在while循环中没有终止条件的时候会自动判断并报错,写的时候忘记加!=EOF结束标识了. HDOJ2010_水仙花数 #inclu ...

  5. NoSuchBeanDefinitionException:No qualifying bean of type

    Exception in thread "main" org.springframework.beans.factory.NoSuchBeanDefinitionException ...

  6. 【转】XSHELL下直接下载文件到本地(Windows)

    XSHELL下直接下载文件到本地(Windows) http://www.cnblogs.com/davytitan/p/3966606.html

  7. 使用telnet模拟http请求

    HTTP 首先我们需要知道http报文是由一系列的字符串组成的.然后我们来了解具体的相关事项. 方法 HTTP支持几种不同形式的请求命令,这些命令就被称为HTTP方法.每个HTTP请求报文都包含一个方 ...

  8. Docker(十四)-Docker四种网络模式

    Docker 安装时会自动在 host 上创建三个网络,我们可用 docker network ls 命令查看: none模式,使用--net=none指定,该模式关闭了容器的网络功能. host模式 ...

  9. Linux 更改root与home分区大小的方法总结

    1. 安装了CentOS7.5的虚拟机 但是发现里面的操作系统 home 分区占到了400g 根分区只有50g 认为不太好,所以要改一下. 2.方法. 好像是xfs的文件格式, 没法使用resize2 ...

  10. IDEA 操作及快捷键总结

    一.设置IDEA使用Eclipse快捷键 File->Settings->Keymap->选择Eclipse,就可以使用Eclipse的快捷键了,但是不能修改.如果想要修改,需要点击 ...