传送门:Problem 3678

https://www.cnblogs.com/violet-acmer/p/9769406.html

难点:

  题意理解+构图

题意:

  有n个点 v[0,2......,n-1](v[i]值为0或1),边(a[i],b[i])间的权值为c[i],现在给出它们之间的一些逻辑运算的结果(比如c[1]=a[1] & b[1] = 1),逻辑运算有AND OR XOR三种,问是否存在一种满足所有条件的取值方案。

构图难点:

  如果类似 u v 1 AND这样的数据,说明u,v的1必须都选,那么就把u的0连向u的1,v的0连向v的1,这样的目的是使得推出矛盾;

  同理 u v 0 or 这样的数据,说明u,v的0必须都选,那么就把u的1连向u的0,v的1连向v的0,这样的目的是使得推出矛盾;

AC代码:

 #include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
using namespace std;
#define pb push_back
#define mem(a,b) (memset(a,b,sizeof a))
const int maxV=1e3+;
const int maxE=1e6+; int n,m;
int a[maxE],b[maxE],c[maxE];
char op[];
int scc[*maxV];
bool vis[*maxV];
vector<int >vs;
vector<int >G[*maxV],rG[*maxV];
void addEdge(int u,int v)
{
G[u].pb(v);
rG[v].pb(u);
}
void Dfs(int u)
{
vis[u]=true;
for(int i=;i < G[u].size();++i)
{
int to=G[u][i];
if(!vis[to])
Dfs(to);
}
vs.pb(u);
}
void rDfs(int u,int k)
{
vis[u]=true;
scc[u]=k;
for(int i=;i < rG[u].size();++i)
{
int to=rG[u][i];
if(!vis[to])
rDfs(to,k);
}
}
void SCC()
{
mem(vis,false);
vs.clear();
for(int i=;i < *n;++i)
if(!vis[i])
Dfs(i);
mem(vis,false);
int k=;
for(int i=vs.size()-;i >= ;--i)
{
int to=vs[i];
if(!vis[to])
rDfs(to,++k);
}
}
void Init()
{
for(int i=;i < maxV;++i)
G[i].clear(),rG[i].clear();
}
int main()
{
scanf("%d%d",&n,&m);
Init();
for(int i=;i <= m;++i)
{
scanf("%d%d%d%s",a+i,b+i,c+i,op);
switch (op[])
{
case 'A':
if(c[i] == )
addEdge(a[i],b[i]+n),addEdge(b[i],a[i]+n);
else
addEdge(a[i]+n,a[i]),addEdge(b[i]+n,b[i]);
break;
case 'O':
if(c[i] == )
addEdge(a[i]+n,b[i]),addEdge(b[i]+n,a[i]);
else
addEdge(a[i],a[i]+n),addEdge(b[i],b[i]+n);
break;
case 'X':
if(c[i] == )
{
addEdge(a[i],b[i]+n),addEdge(b[i]+n,a[i]);
addEdge(a[i]+n,b[i]),addEdge(b[i],a[i]+n);
}
else
{
addEdge(a[i],b[i]),addEdge(b[i],a[i]);
addEdge(a[i]+n,b[i]+n),addEdge(b[i]+n,a[i]+n);
}
break;
}
}
SCC();
bool flag=false;
for(int i=;i < n;++i)
if(scc[i] == scc[i+n])
flag=true;
if(flag)
printf("NO\n");
else
printf("YES\n"); }

poj 3678(SCC+2-SAT)的更多相关文章

  1. Katu Puzzle POJ - 3678 (2 - sat)

    有N个变量X1X1~XNXN,每个变量的可能取值为0或1. 给定M个算式,每个算式形如 XaopXb=cXaopXb=c,其中 a,b 是变量编号,c 是数字0或1,op 是 and,or,xor 三 ...

  2. HDU 3062 && HDU 1824 && POJ 3678 && BZOJ 1997 2-SAT

    一条边<u,v>表示u选那么v一定被选. #include <iostream> #include <cstring> #include <cstdio> ...

  3. POJ 3678 Katu Puzzle(2-SAT,合取范式大集合)

    Katu Puzzle Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9987   Accepted: 3741 Descr ...

  4. poj 3678 Katu Puzzle(Two Sat)

    题目链接:http://poj.org/problem?id=3678 代码: #include<cstdio> #include<cstring> #include<i ...

  5. POJ 3678 Katu Puzzle(2 - SAT) - from lanshui_Yang

    Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...

  6. Katu Puzzle POJ - 3678(水2 - sat)

    题意: 有n个未知量,m对未知量之间的关系,判断是否能求出所有的未知量且满足这些关系 解析: 关系建边就好了 #include <iostream> #include <cstdio ...

  7. poj 3678 Katu Puzzle(2-sat)

    Description Katu Puzzle ≤ c ≤ ). One Katu ≤ Xi ≤ ) such that for each edge e(a, b) labeled by op and ...

  8. POJ 3678 Katu Puzzle 2-SAT 强连通分量 tarjan

    http://poj.org/problem?id=3678 给m条连接两个点的边,每条边有一个权值0或1,有一个运算方式and.or或xor,要求和这条边相连的两个点经过边上的运算后的结果是边的权值 ...

  9. 基础但是很重要的2-sat POJ 3678

    http://poj.org/problem?id=3678 题目大意:就是给你n个点,m条边,每个点都可以取值为0或者1,边上都会有一个符号op(op=xor or and三种)和一个权值c.然后问 ...

随机推荐

  1. selective search

    1.引言:图像的物体识别主要有两个步骤:定位.分类.在分类的过程中,需要对图像中文物体的区域划分出来.传统的方法是利用滑窗,一个窗口一个窗口得选择,将之与目标进行比较,确定物体的位置. 为了降低搜索空 ...

  2. python函数基础用法

    函数是通过赋值传递的,参数通过赋值传递给参数,def语句将创建的一个函数对象 并将其赋值给一个变量名! 函数定义的对象属局部作用域,只在函数内部有效,不会影响全局作用域中的对象! 赋值对象属于局部作用 ...

  3. Service Fabric

    Service Fabric 开源 微软的Azure Service Fabric的官方博客在3.24日发布了一篇博客 Service Fabric .NET SDK goes open source ...

  4. 速读《构建之法》(Build to win)有感

    通过这两天时间,我粗读了<构建之法>这本书.老实说,对于这样四百多页的一本书,刚开始把这样的任务当作是一种负担,然而当我开始真正接触它时却被它幽默有趣的风格所深深吸引,它不同于以往学习的教 ...

  5. JavaScript 字符串与数组互转,并保持数据去重、排序功能

    var valueArr = new Array(); if( $("input[name='type']").val() != ""){ valueArr = ...

  6. 使用telnet模拟http请求

    HTTP 首先我们需要知道http报文是由一系列的字符串组成的.然后我们来了解具体的相关事项. 方法 HTTP支持几种不同形式的请求命令,这些命令就被称为HTTP方法.每个HTTP请求报文都包含一个方 ...

  7. ERP启动会

    一个信念: 只许成功,不许失败. 二个原则: 第一个原则是“业务为主,IT为辅”的实施原则: 第二个原则是“循序渐进,持续改善”的工作原则. 三点要求: 第一点,各分公司.各部门的负责人要将ERP信息 ...

  8. WebService概述

    一.WebService介绍 什么是WebService? 一言以蔽之:WebService是一种跨编程语言和跨操作系统平台的远程调用技术. 所谓跨编程语言和跨操作平台,就是说服务端程序采用java编 ...

  9. reshape、shuffle、save_weights

    #-*- coding: utf-8 -*- import pandas as pd from random import shuffle import matplotlib.pyplot as pl ...

  10. PHP常用工具类积累

    第一 请求第三方接口的工具类 例如,封装了get和post请求方法的工具类,代码如下: <?php class HttpClient{ /** * HttpClient * @param arr ...