浅谈左偏树在OI中的应用
Preface
可并堆,一个听起来很NB的数据结构,实际上比一般的堆就多了一个合并的操作。
考虑一般的堆合并时,当我们合并时只能暴力把一个堆里的元素一个一个插入另一个堆里,这样复杂度将达到\(\log(|A|)+\log(|B|)\),极限数据下显然是要T爆的。
所以我们考虑使用一种性价比最高的可并堆——左偏树,它的思想以及代码都挺简单而且效率也不错。
学习和参考自这里
What is Leftist Tree
左偏树,顾名思义就是像左偏的树,但是这样抽象的表述肯定是不符合我们学OI的人的背板子严谨的态度的。
我们给出一些定义:
- 外节点:当且仅当这个节点的左子树和右子树中的一个是空节点,注意外节点不是叶子节点
- 距离(或者是高度?):对于左偏树中的一个节点\(x\),到它的子节点中,离它最近的一个外结点经过的边数称为它的距离,记为\(dist_x\)。特别地,外结点的距离为0,空节点(null)的距离为\(-1\)。
然后跟着这个定义我们可以得出一些性质:
- 堆性质:对于左偏树中的一个非叶节点应满足堆的性质。如果是大根堆,应满足任意非叶节点的值大于左右孩子(如果有的话)的值。即\(val_x\ge val_{lson(x)},val_{rson(x)}\)
- 左偏性质:对于左偏树中的任意节点满足它的左子树(如果有的话)的距离大于等于右子树(如果有的话)的距离。即\(dist_{lson(x)}\ge dist_{rson(x)}\)
- 传递性?:左偏树任意节点的左右儿子(如果有的话)都是一棵左偏树废话
由这几条性质可以发现左偏树是具有左偏性质的堆有序二叉树。
同时还有一条不可忽视的重要引理:左偏树中的节点的距离总是满足\(dist_x=dist_{rsom(x)}+1\)
证明:同时由距离的定义以及左偏性质即可得出。
The operator of Leftist Tree
BB了这么就性质啥的抽象东西,是时候讲点真正有用的东西了。
Merge
可并堆的基本操作(也是必备操作)自然是快速地完成合并了,同时合并也是左偏树的灵魂部分,只要说掌握了合并的话就可以直接拿着左偏树大力切题了。
以下假定大根堆的情况,我们假定要合并的两个左偏树(注意单个节点也是左偏树)的根为\(x,y\)
我们首先维护堆的性质,令\(val_x>val_y\),即当值不满足的时候\(\operatorname{swap}(x,y)\)
那么我们发现这时候就要把\(y\)插入\(x\)的子树中了,换句话说,就是要把\(y\)和\(x\)的子树合并。
那么和谁合并呢?考虑我们辛辛苦苦维护的左偏性质,由于右边的链长小于等于左边的,所以为了保证复杂度肯定是直接和\(dist\)小的合并了,于是我们合并\(rson(x)\)和\(y\)
但是插入后右子树的\(dist\)可能会大于左边了这样就变右偏树了,我们肯定是不允许的,于是我们判断一下这种情况,如果有就直接交换左右子树(注意直接交换编号即可)即可。
那么什么时候结束呢,当然是当\(x\)或\(y\)中一者为空了啦。所以我们可以比较轻松的得到合并的代码(返回合并的堆的堆顶编号):
inline int merge(int x,int y)
{
if (!x||!y) return x+y; if (c[x]<c[y]) swap(x,y);
rc(x)=merge(rc(x),y); if (node[lc(x)].dis<node[rc(x)].dis) swap(lc(x),rc(x));
node[x].dis=node[rc(x)].dis+1; return x;
}
这里放一张Luogu上找到的动图可以更加生动地理解下:

复杂度的话类似启发式的思想发现是\(O(\log)\)级别的。
push
push的本质就是把一个只有一个节点的左偏树于一颗左偏树合并,因此直接用merge即可。
top
这个直接返回根节点的权值即可。
pop
删除根节点的话可以考虑合并根节点的两个子树,代码
inline void remove(int &x)
{
x=merge(lc(x),rc(x));
}
板子题:Luogu P3377 【模板】左偏树(可并堆)
这个我们维护小根对的时候再维护一个父节点的信息即可查询两个数是否在同一颗左偏树里了。
CODE
#include<cstdio>
#include<cctype>
using namespace std;
const int N=100005;
struct Leftist_Tree
{
int ch[2],val,dis,fa;
}node[N];
int n,m,x,y,opt;
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch; while (!isdigit(ch=tc()));
while (x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
}
inline void write(int x)
{
if (x>9) write(x/10);
putchar(x%10+'0');
}
inline void swap(int &a,int &b)
{
int t=a; a=b; b=t;
}
inline int merge(int x,int y)
{
if (!x||!y) return x+y;
if (node[x].val>node[y].val||(node[x].val==node[y].val&&x>y)) swap(x,y);
node[x].ch[1]=merge(node[x].ch[1],y); node[node[x].ch[1]].fa=x;
if (node[node[x].ch[0]].dis<node[node[x].ch[1]].dis) swap(node[x].ch[0],node[x].ch[1]);
node[x].dis=node[node[x].ch[1]].dis+1; return x;
}
inline void remove(int x)
{
node[x].val=-1; node[node[x].ch[0]].fa=node[node[x].ch[1]].fa=0;
merge(node[x].ch[0],node[x].ch[1]);
}
inline int getfather(int x)
{
while (node[x].fa) x=node[x].fa; return x;
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i; read(n); read(m); node[0].dis=-1;
for (i=1;i<=n;++i) read(node[i].val);
while (m--)
{
read(opt); read(x); if (opt^2)
{
read(y); int fx=getfather(x),fy=getfather(y);
if (~node[fx].val&&~node[fy].val&&fx!=fy) merge(fx,fy);
} else
{
int fx=getfather(x); if (!(~node[fx].val)) puts("-1"); else
write(node[fx].val),putchar('\n'),remove(fx);
}
}
return 0;
}
例题
- Luogu P1552 [APIO2012]派遣可并堆好题。考虑以每个点为领导者计算答案那么可选的点都在这颗子树中,那么考虑用的人最多我们就贪心的把大的扔掉,回溯时合并两个堆即可。左偏树处理。
- BZOJ 1367: [Baltic2004]sequence 可并堆好题,一眼看不出。考虑先求不降序列的情况,发现可以对原序列的所有不升序列进行分割,这样必然是取中位数(反证法)。然后用左偏树统计中位数并支持合并即可。
Postscript
可并堆算是介于TG和省选之间的尴尬内容的吧,往年NOIp的话不见出现过。
左偏树虽说在效率上次于配对堆,斐波那契堆这些神仙数据结构,但是它简单的思想以及码量都是很良心的。
还是稍微要掌握一下的吧。
浅谈左偏树在OI中的应用的更多相关文章
- HDU 1512 Monkey King(左偏树+并查集)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=1512 [题目大意] 现在有 一群互不认识的猴子,每个猴子有一个能力值,每次选择两个猴子,挑出他们所 ...
- P3377 【模板】左偏树(可并堆) 左偏树浅谈
因为也是昨天刚接触左偏树,从头理解,如有不慎之处,跪请指教. 左偏树: 什 么是(fzy说)左偏树啊? 前置知识: 左偏树中dist:表示到右叶点(就是一直往右下找,最后一个)的距离,特别的,无右节点 ...
- HDU 1512 Monkey King(左偏树)
Description Once in a forest, there lived N aggressive monkeys. At the beginning, they each does thi ...
- 洛谷P4331 [BOI2004] Sequence 数字序列 [左偏树]
题目传送门 数字序列 题目描述 给定一个整数序列 a1,a2,⋅⋅⋅,an ,求出一个递增序列 b1<b2<⋅⋅⋅<bn ,使得序列 ai 和 bi 的各项之差的绝对 ...
- zoj 2334 Monkey King/左偏树+并查集
原题链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1389 大致题意:N只相互不认识的猴子(每只猴子有一个战斗力值) 两只 ...
- POJ3016-K-Monotonic(左偏树+DP)
我觉得我要改一下签名了……怎么会有窝这么啰嗦的人呢? 做这题需要先学习左偏树<左偏树的特点及其应用> 然后做一下POJ3666,这题的简单版. 思路: 考虑一下维护中位数的过程原数组为A, ...
- POJ3666-Making the Grade(左偏树 or DP)
左偏树 炒鸡棒的论文<左偏树的特点及其应用> 虽然题目要求比论文多了一个条件,但是……只需要求非递减就可以AC……数据好弱…… 虽然还没想明白为什么,但是应该觉得应该是这样——求非递减用大 ...
- 左偏树(Leftist Heap/Tree)简介及代码
左偏树是一种常用的优先队列(堆)结构.与二叉堆相比,左偏树可以高效的实现两个堆的合并操作. 左偏树实现方便,编程复杂度低,而且有着不俗的效率表现. 它的一个常见应用就是与并查集结合使用.利用并查集确定 ...
- 黄源河《左偏树的应用》——数字序列(Baltic 2004)
这道题哪里都找不到. [问题描述] 给定一个整数序列a1, a2, … , an,求一个不下降序列b1 ≤ b2 ≤ … ≤ bn,使得数列{ai}和{bi}的各项之差的绝对值之和 |a1 - b1| ...
随机推荐
- 使用windows命令和iconv.exe批量转换文件编码
iconv是知名的开源跨平台编码转换库,iconv.exe是iconv库在windows下的命令行工具,iconv.exe的一般用法:iconv.exe -f gbk -t utf-8 gbk.txt ...
- .Net Core 2.0 生态(1).NET Standard 2.0 特性介绍和使用指南
.NET Standard 2.0 发布日期:2017年8月14日 公告原文地址 前言 早上起来.NET社区沸腾了,期待已久的.NET Core 2.0终于发布!根据个人经验,微软的产品一般在2.0时 ...
- Mongo学习---mongo入门1
Docker安装以及设置mongo用户 docker pull mongo (拉取镜像 默认最新版本) docker images (查看镜像) docker run -p 27017:27017 - ...
- office(Word、Excel、PPT等图标异常和桌面无新建解决方案)
前言吐槽: 前不久因为安装了WPS,然后觉得不好用卸载WPS装回office就出现了一个很恶心的问题:word文档.excel文档.PPT这些办公软件图标异常,显示的是下面这样: 打开倒是可以正常用w ...
- Alpha冲刺! Day3 - 砍柴
Alpha冲刺! Day3 - 砍柴 今日已完成 晨瑶:补充安卓技能树: review接口文档:看了点七牛云安卓API. 昭锡:没有团队项目相关贡献. 永盛: API 文档基本完成:根据 API 文档 ...
- ASP.NET WebAPI 双向token实现对接小程序登录逻辑
最近在学习用asp.net webapi搭建小程序的后台服务,因为基于小程序端和后台二者的通信,不像OAuth(开放授权),存在第三方应用.所以这个token是双向的,一个是对用户的,一个是对接口的. ...
- Python--详解Python中re.sub
给出定义: re.sub(pattern, repl, string, count=0, flags=0) Return the string obtained by replacing the le ...
- 史上最全脉搏心率传感器PulseSensor资料(电路图+中文说明书+最全源代码)
准确度说明: 1 输入引脚一定要接在模拟输入口上 ESP-D1 只有一个模拟输入口 A0 0-3.3V 心跳不要接在5v上,否则电压不准 ESP-D1开发板有一个5V和一个3.3v 普通ar ...
- Redis漏洞,远程攻击
文章转自http://blog.csdn.net/whs_321/article/details/51734602 http://blog.knownsec.com/2015/11/analysis- ...
- sd错误---2
一道水题 绊了我,居然 愿意很简单 我多打了一遍int main 阴错阳差的 自定义的函数上面 出现了int main 所以 以后想想好思路(是那种很全很全的思路) 再写代码 一定要避免sd错误!!! ...