来自 http://blog.csdn.net/jasonding1354/article/details/46340729

内容概要

  • 如何使用pandas读入数据
  • 如何使用seaborn进行数据的可视化
  • scikit-learn的线性回归模型和使用方法
  • 线性回归模型的评估测度
  • 特征选择的方法
 

作为有监督学习,分类问题是预测类别结果,而回归问题是预测一个连续的结果。

 

1. 使用pandas来读取数据

Pandas是一个用于数据探索、数据处理、数据分析的Python库

In [1]:
import pandas as pd
In [2]:
# read csv file directly from a URL and save the results
data = pd.read_csv('http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv', index_col=0) # display the first 5 rows
data.head()
Out[2]:
  TV Radio Newspaper Sales
1 230.1 37.8 69.2 22.1
2 44.5 39.3 45.1 10.4
3 17.2 45.9 69.3 9.3
4 151.5 41.3 58.5 18.5
5 180.8 10.8 58.4 12.9
 

上面显示的结果类似一个电子表格,这个结构称为Pandas的数据帧(data frame)。

pandas的两个主要数据结构:Series和DataFrame:

  • Series类似于一维数组,它有一组数据以及一组与之相关的数据标签(即索引)组成。
  • DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型。DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典。
In [3]:
# display the last 5 rows
data.tail()
Out[3]:
  TV Radio Newspaper Sales
196 38.2 3.7 13.8 7.6
197 94.2 4.9 8.1 9.7
198 177.0 9.3 6.4 12.8
199 283.6 42.0 66.2 25.5
200 232.1 8.6 8.7 13.4
In [4]:
# check the shape of the DataFrame(rows, colums)
data.shape
Out[4]:
(200, 4)
 

特征:

  • TV:对于一个给定市场中单一产品,用于电视上的广告费用(以千为单位)
  • Radio:在广播媒体上投资的广告费用
  • Newspaper:用于报纸媒体的广告费用

响应:

  • Sales:对应产品的销量

在这个案例中,我们通过不同的广告投入,预测产品销量。因为响应变量是一个连续的值,所以这个问题是一个回归问题。数据集一共有200个观测值,每一组观测对应一个市场的情况。

In [5]:
import seaborn as sns

%matplotlib inline
In [6]:
# visualize the relationship between the features and the response using scatterplots
sns.pairplot(data, x_vars=['TV','Radio','Newspaper'], y_vars='Sales', size=7, aspect=0.8)
Out[6]:
<seaborn.axisgrid.PairGrid at 0x82dd890>
 
 

seaborn的pairplot函数绘制X的每一维度和对应Y的散点图。通过设置size和aspect参数来调节显示的大小和比例。可以从图中看出,TV特征和销量是有比较强的线性关系的,而Radio和Sales线性关系弱一些,Newspaper和Sales线性关系更弱。通过加入一个参数kind=’reg’,seaborn可以添加一条最佳拟合直线和95%的置信带。

In [7]:
sns.pairplot(data, x_vars=['TV','Radio','Newspaper'], y_vars='Sales', size=7, aspect=0.8, kind='reg')
Out[7]:
<seaborn.axisgrid.PairGrid at 0x83b76f0>
 
 

2. 线性回归模型

优点:快速;没有调节参数;可轻易解释;可理解

缺点:相比其他复杂一些的模型,其预测准确率不是太高,因为它假设特征和响应之间存在确定的线性关系,这种假设对于非线性的关系,线性回归模型显然不能很好的对这种数据建模。

 

线性模型表达式: y=β0+β1x1+β2x2+...+βnxn 其中

  • y是响应
  • β0是截距
  • β1是x1的系数,以此类推

在这个案例中: y=β0+β1∗TV+β2∗Radio+...+βn∗Newspaper

 

(1)使用pandas来构建X和y

  • scikit-learn要求X是一个特征矩阵,y是一个NumPy向量
  • pandas构建在NumPy之上
  • 因此,X可以是pandas的DataFrame,y可以是pandas的Series,scikit-learn可以理解这种结构
In [8]:
# create a python list of feature names
feature_cols = ['TV', 'Radio', 'Newspaper'] # use the list to select a subset of the original DataFrame
X = data[feature_cols] # equivalent command to do this in one line
X = data[['TV', 'Radio', 'Newspaper']] # print the first 5 rows
X.head()
Out[8]:
  TV Radio Newspaper
1 230.1 37.8 69.2
2 44.5 39.3 45.1
3 17.2 45.9 69.3
4 151.5 41.3 58.5
5 180.8 10.8 58.4
In [9]:
# check the type and shape of X
print type(X)
print X.shape
 
<class 'pandas.core.frame.DataFrame'>
(200, 3)
In [10]:
# select a Series from the DataFrame
y = data['Sales'] # equivalent command that works if there are no spaces in the column name
y = data.Sales # print the first 5 values
y.head()
Out[10]:
1    22.1
2 10.4
3 9.3
4 18.5
5 12.9
Name: Sales, dtype: float64
In [11]:
print type(y)
print y.shape
 
<class 'pandas.core.series.Series'>
(200,)
 

(2)构造训练集和测试集

In [12]:
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
In [14]:
# default split is 75% for training and 25% for testing
print X_train.shape
print y_train.shape
print X_test.shape
print y_test.shape
 
(150, 3)
(150,)
(50, 3)
(50,)
 

(3)Scikit-learn的线性回归

In [15]:
from sklearn.linear_model import LinearRegression

linreg = LinearRegression()

linreg.fit(X_train, y_train)
Out[15]:
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
In [16]:
print linreg.intercept_
print linreg.coef_
 
2.87696662232
[ 0.04656457 0.17915812 0.00345046]
In [17]:
# pair the feature names with the coefficients
zip(feature_cols, linreg.coef_)
Out[17]:
[('TV', 0.046564567874150253),
('Radio', 0.17915812245088836),
('Newspaper', 0.0034504647111804482)]
 

y=2.88+0.0466∗TV+0.179∗Radio+0.00345∗Newspaper

 

如何解释各个特征对应的系数的意义?

  • 对于给定了Radio和Newspaper的广告投入,如果在TV广告上每多投入1个单位,对应销量将增加0.0466个单位
  • 更明确一点,加入其它两个媒体投入固定,在TV广告上没增加1000美元(因为单位是1000美元),销量将增加46.6(因为单位是1000)
 

(4)预测

In [18]:
y_pred = linreg.predict(X_test)
 

3. 回归问题的评价测度

对于分类问题,评价测度是准确率,但这种方法不适用于回归问题。我们使用针对连续数值的评价测度(evaluation metrics)。

 

下面介绍三种常用的针对回归问题的评价测度

In [21]:
# define true and predicted response values
true = [100, 50, 30, 20]
pred = [90, 50, 50, 30]
 

(1)平均绝对误差(Mean Absolute Error, MAE)

1n∑ni=1|yi−yi^|

(2)均方误差(Mean Squared Error, MSE)

1n∑ni=1(yi−yi^)2

(3)均方根误差(Root Mean Squared Error, RMSE)

1n∑ni=1(yi−yi^)2−−−−−−−−−−−−−√

In [24]:
from sklearn import metrics
import numpy as np
# calculate MAE by hand
print "MAE by hand:",(10 + 0 + 20 + 10)/4. # calculate MAE using scikit-learn
print "MAE:",metrics.mean_absolute_error(true, pred) # calculate MSE by hand
print "MSE by hand:",(10**2 + 0**2 + 20**2 + 10**2)/4. # calculate MSE using scikit-learn
print "MSE:",metrics.mean_squared_error(true, pred) # calculate RMSE by hand
print "RMSE by hand:",np.sqrt((10**2 + 0**2 + 20**2 + 10**2)/4.) # calculate RMSE using scikit-learn
print "RMSE:",np.sqrt(metrics.mean_squared_error(true, pred))
 
MAE by hand: 10.0
MAE: 10.0
MSE by hand: 150.0
MSE: 150.0
RMSE by hand: 12.2474487139
RMSE: 12.2474487139
 

计算Sales预测的RMSE

In [26]:
print np.sqrt(metrics.mean_squared_error(y_test, y_pred))
 
1.40465142303
 

4. 特征选择

在之前展示的数据中,我们看到Newspaper和销量之间的线性关系比较弱,现在我们移除这个特征,看看线性回归预测的结果的RMSE如何?

In [27]:
feature_cols = ['TV', 'Radio']

X = data[feature_cols]
y = data.Sales X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) linreg.fit(X_train, y_train) y_pred = linreg.predict(X_test) print np.sqrt(metrics.mean_squared_error(y_test, y_pred))
 
1.38790346994
 

我们将Newspaper这个特征移除之后,得到RMSE变小了,说明Newspaper特征不适合作为预测销量的特征,于是,我们得到了新的模型。我们还可以通过不同的特征组合得到新的模型,看看最终的误差是如何的。

转载请注明:人人都是数据咖 » scikit-learn的线性回归模型

scikit-learn的线性回归模型的更多相关文章

  1. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  2. 使用SKlearn(Sci-Kit Learn)进行SVR模型学习

    今天了解到sklearn这个库,简直太酷炫,一行代码完成机器学习. 贴一个自动生成数据,SVR进行数据拟合的代码,附带网格搜索(GridSearch, 帮助你选择合适的参数)以及模型保存.读取以及结果 ...

  3. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  4. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  5. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  6. 【scikit-learn】scikit-learn的线性回归模型

     内容概要 怎样使用pandas读入数据 怎样使用seaborn进行数据的可视化 scikit-learn的线性回归模型和用法 线性回归模型的评估測度 特征选择的方法 作为有监督学习,分类问题是预 ...

  7. R语言解读多元线性回归模型

    转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止 ...

  8. R语言解读一元线性回归模型

    转载自:http://blog.fens.me/r-linear-regression/ 前言 在我们的日常生活中,存在大量的具有相关性的事件,比如大气压和海拔高度,海拔越高大气压强越小:人的身高和体 ...

  9. 多元线性回归 ——模型、估计、检验与预测

    一.模型假设 传统多元线性回归模型 最重要的假设的原理为: 1. 自变量和因变量之间存在多元线性关系,因变量y能够被x1,x2-.x{k}完全地线性解释:2.不能被解释的部分则为纯粹的无法观测到的误差 ...

  10. 一元线性回归模型与最小二乘法及其C++实现

    原文:http://blog.csdn.net/qll125596718/article/details/8248249 监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等), ...

随机推荐

  1. Java并发编程(十)阻塞队列

    使用非阻塞队列的时候有一个很大问题就是:它不会对当前线程产生阻塞,那么在面对类似消费者-生产者的模型时,就必须额外地实现同步策略以及线程间唤醒策略,这个实现起来就非常麻烦.但是有了阻塞队列就不一样了, ...

  2. 【Java入门提高篇】Day22 Java容器类详解(五)HashMap源码分析(上)

    准备了很长时间,终于理清了思路,鼓起勇气,开始介绍本篇的主角——HashMap.说实话,这家伙能说的内容太多了,要是像前面ArrayList那样翻译一下源码,稍微说说重点,肯定会让很多人摸不着头脑,不 ...

  3. 一种快速部署开发用oracle的办法

    前段时间工作中需要在不少开发环境中快速提供开发可用的oracle环境,由于一一培训并部署原生oracle人力和时间成本过高,后来使用docker版本oracle,大大方便了开发工作的快速启动,方法记录 ...

  4. 安装VisualSVN Server 报"Service 'VisualSVN Server' failed to start. Please check VisualSVN Server log in Event Viewer for more details"错误.原因是启动"VisualSVN Server"失败

    安装VisualSVN Server 报"Service 'VisualSVN Server' failed to start. Please check VisualSVN Server ...

  5. 怎样让引用类库的类在HelpPage上显示Description

        最近在做 web api 开发的时候遇到这样的问题,即 HelpPage 里只能显示 api 控制器上的注释,对于那些引用了外部类库的类(比如POST提交需要用到的类),就无法显示它们的备注, ...

  6. java基础-温故而知新(02)

    基本数据的自动拆装箱及享元设计模式 1.1 自动装箱        -128~127 之间的整数,装在一个内存区域.         超过这个范围的整数,装在不同的内存区域. 1.2 自动拆箱     ...

  7. syslog与rsyslog的了解与比较

    syslog日志收集器: syslog是早期的centos版本的日志收集器,应该是centos5之前的版本. syslog的两个重要的守护进程: 1.syslogd:system.主要以收集系统服务为 ...

  8. elasticsearch版本控制及mapping映射属性介绍

    学习elasticsearch不仅只会操作,基本的运行原理我们还是需要进行了解,以下内容我讲对elasticsearch中的基本知识原理进行梳理,希望对大家有所帮助! 一.ES版本控制 1.Elast ...

  9. java调用Linux执行Python爬虫,并将数据存储到elasticsearch中--(java后台代码)

    该篇博客主要是java代码,如需相应脚本及java连接elasticsearch工具类代码,请移步到上一篇博客(https://www.cnblogs.com/chenyuanbo/p/9973685 ...

  10. APC | Memcache等缓存key冲突的解决的方法

    版权声明:https://github.com/wusuopubupt https://blog.csdn.net/wusuopuBUPT/article/details/24397109 apc.m ...