scikit-learn的线性回归模型

来自 http://blog.csdn.net/jasonding1354/article/details/46340729
内容概要
- 如何使用pandas读入数据
- 如何使用seaborn进行数据的可视化
- scikit-learn的线性回归模型和使用方法
- 线性回归模型的评估测度
- 特征选择的方法
作为有监督学习,分类问题是预测类别结果,而回归问题是预测一个连续的结果。
1. 使用pandas来读取数据
Pandas是一个用于数据探索、数据处理、数据分析的Python库
import pandas as pd
# read csv file directly from a URL and save the results
data = pd.read_csv('http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv', index_col=0) # display the first 5 rows
data.head()
TV | Radio | Newspaper | Sales | |
---|---|---|---|---|
1 | 230.1 | 37.8 | 69.2 | 22.1 |
2 | 44.5 | 39.3 | 45.1 | 10.4 |
3 | 17.2 | 45.9 | 69.3 | 9.3 |
4 | 151.5 | 41.3 | 58.5 | 18.5 |
5 | 180.8 | 10.8 | 58.4 | 12.9 |
上面显示的结果类似一个电子表格,这个结构称为Pandas的数据帧(data frame)。
pandas的两个主要数据结构:Series和DataFrame:
- Series类似于一维数组,它有一组数据以及一组与之相关的数据标签(即索引)组成。
- DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型。DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典。
# display the last 5 rows
data.tail()
TV | Radio | Newspaper | Sales | |
---|---|---|---|---|
196 | 38.2 | 3.7 | 13.8 | 7.6 |
197 | 94.2 | 4.9 | 8.1 | 9.7 |
198 | 177.0 | 9.3 | 6.4 | 12.8 |
199 | 283.6 | 42.0 | 66.2 | 25.5 |
200 | 232.1 | 8.6 | 8.7 | 13.4 |
# check the shape of the DataFrame(rows, colums)
data.shape
(200, 4)
特征:
- TV:对于一个给定市场中单一产品,用于电视上的广告费用(以千为单位)
- Radio:在广播媒体上投资的广告费用
- Newspaper:用于报纸媒体的广告费用
响应:
- Sales:对应产品的销量
在这个案例中,我们通过不同的广告投入,预测产品销量。因为响应变量是一个连续的值,所以这个问题是一个回归问题。数据集一共有200个观测值,每一组观测对应一个市场的情况。
import seaborn as sns %matplotlib inline
# visualize the relationship between the features and the response using scatterplots
sns.pairplot(data, x_vars=['TV','Radio','Newspaper'], y_vars='Sales', size=7, aspect=0.8)
<seaborn.axisgrid.PairGrid at 0x82dd890>

seaborn的pairplot函数绘制X的每一维度和对应Y的散点图。通过设置size和aspect参数来调节显示的大小和比例。可以从图中看出,TV特征和销量是有比较强的线性关系的,而Radio和Sales线性关系弱一些,Newspaper和Sales线性关系更弱。通过加入一个参数kind=’reg’,seaborn可以添加一条最佳拟合直线和95%的置信带。
sns.pairplot(data, x_vars=['TV','Radio','Newspaper'], y_vars='Sales', size=7, aspect=0.8, kind='reg')
<seaborn.axisgrid.PairGrid at 0x83b76f0>

2. 线性回归模型
优点:快速;没有调节参数;可轻易解释;可理解
缺点:相比其他复杂一些的模型,其预测准确率不是太高,因为它假设特征和响应之间存在确定的线性关系,这种假设对于非线性的关系,线性回归模型显然不能很好的对这种数据建模。
线性模型表达式: y=β0+β1x1+β2x2+...+βnxn 其中
- y是响应
- β0是截距
- β1是x1的系数,以此类推
在这个案例中: y=β0+β1∗TV+β2∗Radio+...+βn∗Newspaper
(1)使用pandas来构建X和y
- scikit-learn要求X是一个特征矩阵,y是一个NumPy向量
- pandas构建在NumPy之上
- 因此,X可以是pandas的DataFrame,y可以是pandas的Series,scikit-learn可以理解这种结构
# create a python list of feature names
feature_cols = ['TV', 'Radio', 'Newspaper'] # use the list to select a subset of the original DataFrame
X = data[feature_cols] # equivalent command to do this in one line
X = data[['TV', 'Radio', 'Newspaper']] # print the first 5 rows
X.head()
TV | Radio | Newspaper | |
---|---|---|---|
1 | 230.1 | 37.8 | 69.2 |
2 | 44.5 | 39.3 | 45.1 |
3 | 17.2 | 45.9 | 69.3 |
4 | 151.5 | 41.3 | 58.5 |
5 | 180.8 | 10.8 | 58.4 |
# check the type and shape of X
print type(X)
print X.shape
<class 'pandas.core.frame.DataFrame'>
(200, 3)
# select a Series from the DataFrame
y = data['Sales'] # equivalent command that works if there are no spaces in the column name
y = data.Sales # print the first 5 values
y.head()
1 22.1
2 10.4
3 9.3
4 18.5
5 12.9
Name: Sales, dtype: float64
print type(y)
print y.shape
<class 'pandas.core.series.Series'>
(200,)
(2)构造训练集和测试集
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
# default split is 75% for training and 25% for testing
print X_train.shape
print y_train.shape
print X_test.shape
print y_test.shape
(150, 3)
(150,)
(50, 3)
(50,)
(3)Scikit-learn的线性回归
from sklearn.linear_model import LinearRegression linreg = LinearRegression() linreg.fit(X_train, y_train)
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
print linreg.intercept_
print linreg.coef_
2.87696662232
[ 0.04656457 0.17915812 0.00345046]
# pair the feature names with the coefficients
zip(feature_cols, linreg.coef_)
[('TV', 0.046564567874150253),
('Radio', 0.17915812245088836),
('Newspaper', 0.0034504647111804482)]
y=2.88+0.0466∗TV+0.179∗Radio+0.00345∗Newspaper
如何解释各个特征对应的系数的意义?
- 对于给定了Radio和Newspaper的广告投入,如果在TV广告上每多投入1个单位,对应销量将增加0.0466个单位
- 更明确一点,加入其它两个媒体投入固定,在TV广告上没增加1000美元(因为单位是1000美元),销量将增加46.6(因为单位是1000)
(4)预测
y_pred = linreg.predict(X_test)
3. 回归问题的评价测度
对于分类问题,评价测度是准确率,但这种方法不适用于回归问题。我们使用针对连续数值的评价测度(evaluation metrics)。
下面介绍三种常用的针对回归问题的评价测度
# define true and predicted response values
true = [100, 50, 30, 20]
pred = [90, 50, 50, 30]
(1)平均绝对误差(Mean Absolute Error, MAE)
1n∑ni=1|yi−yi^|
(2)均方误差(Mean Squared Error, MSE)
1n∑ni=1(yi−yi^)2
(3)均方根误差(Root Mean Squared Error, RMSE)
1n∑ni=1(yi−yi^)2−−−−−−−−−−−−−√
from sklearn import metrics
import numpy as np
# calculate MAE by hand
print "MAE by hand:",(10 + 0 + 20 + 10)/4. # calculate MAE using scikit-learn
print "MAE:",metrics.mean_absolute_error(true, pred) # calculate MSE by hand
print "MSE by hand:",(10**2 + 0**2 + 20**2 + 10**2)/4. # calculate MSE using scikit-learn
print "MSE:",metrics.mean_squared_error(true, pred) # calculate RMSE by hand
print "RMSE by hand:",np.sqrt((10**2 + 0**2 + 20**2 + 10**2)/4.) # calculate RMSE using scikit-learn
print "RMSE:",np.sqrt(metrics.mean_squared_error(true, pred))
MAE by hand: 10.0
MAE: 10.0
MSE by hand: 150.0
MSE: 150.0
RMSE by hand: 12.2474487139
RMSE: 12.2474487139
计算Sales预测的RMSE
print np.sqrt(metrics.mean_squared_error(y_test, y_pred))
1.40465142303
4. 特征选择
在之前展示的数据中,我们看到Newspaper和销量之间的线性关系比较弱,现在我们移除这个特征,看看线性回归预测的结果的RMSE如何?
feature_cols = ['TV', 'Radio'] X = data[feature_cols]
y = data.Sales X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) linreg.fit(X_train, y_train) y_pred = linreg.predict(X_test) print np.sqrt(metrics.mean_squared_error(y_test, y_pred))
1.38790346994
我们将Newspaper这个特征移除之后,得到RMSE变小了,说明Newspaper特征不适合作为预测销量的特征,于是,我们得到了新的模型。我们还可以通过不同的特征组合得到新的模型,看看最终的误差是如何的。
转载请注明:人人都是数据咖 » scikit-learn的线性回归模型
scikit-learn的线性回归模型的更多相关文章
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- 使用SKlearn(Sci-Kit Learn)进行SVR模型学习
今天了解到sklearn这个库,简直太酷炫,一行代码完成机器学习. 贴一个自动生成数据,SVR进行数据拟合的代码,附带网格搜索(GridSearch, 帮助你选择合适的参数)以及模型保存.读取以及结果 ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- 【scikit-learn】scikit-learn的线性回归模型
内容概要 怎样使用pandas读入数据 怎样使用seaborn进行数据的可视化 scikit-learn的线性回归模型和用法 线性回归模型的评估測度 特征选择的方法 作为有监督学习,分类问题是预 ...
- R语言解读多元线性回归模型
转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止 ...
- R语言解读一元线性回归模型
转载自:http://blog.fens.me/r-linear-regression/ 前言 在我们的日常生活中,存在大量的具有相关性的事件,比如大气压和海拔高度,海拔越高大气压强越小:人的身高和体 ...
- 多元线性回归 ——模型、估计、检验与预测
一.模型假设 传统多元线性回归模型 最重要的假设的原理为: 1. 自变量和因变量之间存在多元线性关系,因变量y能够被x1,x2-.x{k}完全地线性解释:2.不能被解释的部分则为纯粹的无法观测到的误差 ...
- 一元线性回归模型与最小二乘法及其C++实现
原文:http://blog.csdn.net/qll125596718/article/details/8248249 监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等), ...
随机推荐
- OkHttp3源码详解(一) Request类
每一次网络请求都是一个Request,Request是对url,method,header,body的封装,也是对Http协议中请求行,请求头,实体内容的封装 public final class R ...
- Kotlin入门(14)继承的那些事儿
上一篇文章介绍了类对成员的声明方式与使用过程,从而初步了解了类的成员及其运用.不过早在<Kotlin入门(12)类的概貌与构造>中,提到MainActivity继承自AppCompatAc ...
- 针对模拟滚动条插件(jQuery.slimscroll.js)的修改
在开发过程中程序员总会碰到产品经理提出的各种稀奇古怪的需求,尽管有些需求很奇葩,但不得不说有些须有还是能指引我们不断的学习与进步,最近在工作中就碰到这种问题.需求是要求在各主流浏览器上使用自定义的滚动 ...
- mysql8 :客户端连接caching-sha2-password问题
在安装mysql8的时候如果选择了密码加密,之后用客户端连接比如navicate,会提示客户端连接caching-sha2-password,是由于客户端不支持这种插件,可以通过如下方式进行修改: # ...
- 用Python实现数据结构之二叉搜索树
二叉搜索树 二叉搜索树是一种特殊的二叉树,它的特点是: 对于任意一个节点p,存储在p的左子树的中的所有节点中的值都小于p中的值 对于任意一个节点p,存储在p的右子树的中的所有节点中的值都大于p中的值 ...
- Window 由于未经处理的异常,进程终止。
今天遇到了一个程序停止的问题: 应用程序: BussinessService.exe Framework 版本: v4.0.30319 说明: 由于未经处理的异常,进程终止.异常信息: System. ...
- system函数的应用
system函数的两个简单应用 1.调用cmd命令.例:(打开计算器) #include <stdlib.h> int main() { system("calc"); ...
- web自动化-窗口句柄及位置变化
在进行web自动化时,很容易会遇到多窗口进行切换测试,下面就对多窗口的一些句柄和切换及窗口句柄顺序简单总结一下 from selenium import webdriver driver = webd ...
- jquery计算时间差(天、时、分、秒)并使用定时器实时获取
类似网站抢购需求,会有个时间倒计时的展示(天.时.分.秒) 要拿到最终时间与当前时间对比,算出时间差并用定时器以秒的方式执行 实现代码: $(document).ready(function(){ r ...
- php 非对称加密解密类
<?phpnamespace app\Parentclient\model;header("Content-Type: text/html;charset=utf-8");/ ...