题面戳我

Solution

  • 期望的题目真心不太会
  • 定义状态\(f[i]\)表示到第\(i\)期望长度,\(dp[i]\)表示期望分数
  • 如果上一步的持续\(o\)长度为\(L\),那么贡献是\(L^2\),现在长度为\(L+1\),贡献是\(L^2+2*L+1\),那么添加量就是\(2*L+1\)
  • 所以我们可以得到转移方程:

\(ch[i]==o\) 时,\(f[i]=f[i-1]+1 ~~~~~~~~~~~ dp[i]=dp[i-1]+f[i-1]*2+1\)

\(ch[i]==x\) 时,\(f[i]=0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ dp[i]=dp[i-1]\)

\(ch[i]==?\) 时,\(f[i]=(f[i-1]+1)/2 ~~~~~dp[i]=dp[i-1]+(f[i-1]*2+1)/2\)

Code

//it is coded by ning_mew on 7.22
#include<bits/stdc++.h>
using namespace std; const int maxn=3e5+7; double ans=0,dp[maxn],f[maxn];
int n;
char ch[maxn]; int main(){
scanf("%d",&n); scanf("%s",ch);
for(int i=1;i<=n;i++){
if(ch[i-1]=='x'){f[i]=0;dp[i]=dp[i-1];continue;}
if(ch[i-1]=='o'){f[i]=f[i-1]+1;dp[i]=dp[i-1]+f[i-1]*2+1;continue;}
if(ch[i-1]=='?'){f[i]=0.5*f[i-1]+0.5;dp[i]=dp[i-1]+(f[i-1]*2+1)/2;continue;}
}printf("%0.4f\n",dp[n]);return 0;
}

博主蒟蒻,随意转载。但必须附上原文链接:http://www.cnblogs.com/Ning-Mew/,否则你会场场比赛暴0!!!

【题解】 bzoj3450 JoyOI1952 Easy (期望dp)的更多相关文章

  1. 【BZOJ3450】Easy [期望DP]

    Easy Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 某一天WJMZBMR在打osu~~ ...

  2. 【NOI2005】聪聪与可可 题解(最短路+期望DP)

    前言:学长讲的太神了:自己还能推出来DP式子,挺开心. -------------------------- 题目链接 题目大意:给定一张含有$n$个结点$m$条边的无向连通图.现在聪聪在点$s$,可 ...

  3. 【BZOJ3450】Tyvj1952 Easy 期望DP

    [BZOJ3450]Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是 ...

  4. [BZOJ4318] WJMZBMR打osu! / Easy (期望DP)

    题目链接 Solution Wa,我是真的被期望折服了,感觉这道题拿来练手正好. DP的难度可做又巧妙... 我们定义: \(f[i]\) 代表到第 \(i\) 次点击的时候的最大答案. \(g[i] ...

  5. BZOJ.3450.(JoyOI1952) Easy(期望)

    题目链接 /* 设f[i]为到i的期望得分,c[i]为到i的期望连续长度 则若s[i]=='x',f[i]=f[i-1], c[i]=0 s[i]=='0',f[i]=f[i-1]+2*c[i-1]+ ...

  6. BZOJ 3450 Tyvj1952 Easy ——期望DP

    维护$x$和$x^2$的期望递推即可 #include <map> #include <ctime> #include <cmath> #include <q ...

  7. 洛谷P1365 WJMZBMR打osu! / Easy——期望DP

    题目:https://www.luogu.org/problemnew/show/P1365 平方和怎样递推? 其实就是 (x+1)^2 = x^2 + 2*x + 1: 所以我们要关注这里的 x — ...

  8. [bzoj3450]Tyvj1952 Easy[概率dp]

    和之前一样考虑这个音符时x还是o,如果是x,是否是新的连续一段,对答案的贡献是多少$(a^2-{(a-1)}^2)$,然后递推就可以了. #include <bits/stdc++.h> ...

  9. 洛谷 P3239 [HNOI2015]亚瑟王(期望dp)

    题面 luogu 题解 一道复杂的期望\(dp\) 思路来源:__stdcall 容易想到,只要把每张牌打出的概率算出来就可以求出\(ans\) 设\(fp[i]\)表示把第\(i\)张牌打出来的概率 ...

随机推荐

  1. linux 资料

    吾爱linux 摘自传智播客

  2. odoo 11导入外部数据过程记录

    在开发过程中,遇见需要将SQL Server中的数据转移到Pg数据库的情况,那么如何做才能解决这一问题呢? 1.自己写代码,将数据从SQL Server到PG. 2.利用odoo自带的导入功能导入. ...

  3. 汇编 STD和CLD指令

    一.用纯汇编封装函数strcmpW 1.用repnz scasw计算字串长度 2.用repz cmpsw比较字串内容 3.把比较的结果存放在EAX里边返回 __declspec(naked) int ...

  4. .net core 中使用httpclient,HttpClientFactory的问题

    Microsoft 在.Net Framework 4.5中引入了HttpClient,并且是在.NET服务器端代码中使用Web API的最常用方法.但它有一些严重的问题,如释放HttpClient对 ...

  5. [UWP 自定义控件]了解模板化控件(9):UI指南

    1. 使用TemplateSettings统一外观 TemplateSettings提供一组只读属性,用于在新建ControlTemplate时使用这些约定的属性. 譬如,修改HeaderedCont ...

  6. ml-模型评估与选择

    1.基本概念 错误率E=分类错误的样本数a/总样本数m:精度=1-a/m 经验误差/训练误差:在训练集上产生的 泛化误差:在测试集上产生的=====>要把这个泛化误差降到最小化. 2.评估方法 ...

  7. “数学口袋精灵”第二个Sprint计划(第九天)

    第九天进度 任务分配: 冯美欣:欢迎界面背景音乐发现bug(一开始进入游戏可以播放音乐,进入游戏界面,再返回欢迎界面时,音乐播放不出来),仍在解决中: 吴舒婷:改进ui与音效 1.进度条.金黄色: 2 ...

  8. Python 安装 OpenCV 遇到的问题

    从 python下了 opencv_python-3.3.1+contrib-cp36-cp36m-win_amd64.whl [python 3.6  os win10 64  IDE Pychar ...

  9. 重载(overload)、覆盖(override)、隐藏(hide)的区别

    http://blog.csdn.net/yanjun_1982/archive/2005/09/02/470405.aspx 重载是指不同的函数使用相同的函数名,但是函数的参数个数或类型不同.调用的 ...

  10. SSO的定义、原理、组件及应用

    定义: https://baike.baidu.com/item/SSO/3451380 原理: https://blog.csdn.net/cutesource/article/details/58 ...