【题解】 bzoj3450 JoyOI1952 Easy (期望dp)
Solution
- 期望的题目真心不太会
- 定义状态\(f[i]\)表示到第\(i\)期望长度,\(dp[i]\)表示期望分数
- 如果上一步的持续\(o\)长度为\(L\),那么贡献是\(L^2\),现在长度为\(L+1\),贡献是\(L^2+2*L+1\),那么添加量就是\(2*L+1\)
- 所以我们可以得到转移方程:
\(ch[i]==o\) 时,\(f[i]=f[i-1]+1 ~~~~~~~~~~~ dp[i]=dp[i-1]+f[i-1]*2+1\)
\(ch[i]==x\) 时,\(f[i]=0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ dp[i]=dp[i-1]\)
\(ch[i]==?\) 时,\(f[i]=(f[i-1]+1)/2 ~~~~~dp[i]=dp[i-1]+(f[i-1]*2+1)/2\)
Code
//it is coded by ning_mew on 7.22
#include<bits/stdc++.h>
using namespace std;
const int maxn=3e5+7;
double ans=0,dp[maxn],f[maxn];
int n;
char ch[maxn];
int main(){
scanf("%d",&n); scanf("%s",ch);
for(int i=1;i<=n;i++){
if(ch[i-1]=='x'){f[i]=0;dp[i]=dp[i-1];continue;}
if(ch[i-1]=='o'){f[i]=f[i-1]+1;dp[i]=dp[i-1]+f[i-1]*2+1;continue;}
if(ch[i-1]=='?'){f[i]=0.5*f[i-1]+0.5;dp[i]=dp[i-1]+(f[i-1]*2+1)/2;continue;}
}printf("%0.4f\n",dp[n]);return 0;
}
博主蒟蒻,随意转载。但必须附上原文链接:http://www.cnblogs.com/Ning-Mew/,否则你会场场比赛暴0!!!
【题解】 bzoj3450 JoyOI1952 Easy (期望dp)的更多相关文章
- 【BZOJ3450】Easy [期望DP]
Easy Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 某一天WJMZBMR在打osu~~ ...
- 【NOI2005】聪聪与可可 题解(最短路+期望DP)
前言:学长讲的太神了:自己还能推出来DP式子,挺开心. -------------------------- 题目链接 题目大意:给定一张含有$n$个结点$m$条边的无向连通图.现在聪聪在点$s$,可 ...
- 【BZOJ3450】Tyvj1952 Easy 期望DP
[BZOJ3450]Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是 ...
- [BZOJ4318] WJMZBMR打osu! / Easy (期望DP)
题目链接 Solution Wa,我是真的被期望折服了,感觉这道题拿来练手正好. DP的难度可做又巧妙... 我们定义: \(f[i]\) 代表到第 \(i\) 次点击的时候的最大答案. \(g[i] ...
- BZOJ.3450.(JoyOI1952) Easy(期望)
题目链接 /* 设f[i]为到i的期望得分,c[i]为到i的期望连续长度 则若s[i]=='x',f[i]=f[i-1], c[i]=0 s[i]=='0',f[i]=f[i-1]+2*c[i-1]+ ...
- BZOJ 3450 Tyvj1952 Easy ——期望DP
维护$x$和$x^2$的期望递推即可 #include <map> #include <ctime> #include <cmath> #include <q ...
- 洛谷P1365 WJMZBMR打osu! / Easy——期望DP
题目:https://www.luogu.org/problemnew/show/P1365 平方和怎样递推? 其实就是 (x+1)^2 = x^2 + 2*x + 1: 所以我们要关注这里的 x — ...
- [bzoj3450]Tyvj1952 Easy[概率dp]
和之前一样考虑这个音符时x还是o,如果是x,是否是新的连续一段,对答案的贡献是多少$(a^2-{(a-1)}^2)$,然后递推就可以了. #include <bits/stdc++.h> ...
- 洛谷 P3239 [HNOI2015]亚瑟王(期望dp)
题面 luogu 题解 一道复杂的期望\(dp\) 思路来源:__stdcall 容易想到,只要把每张牌打出的概率算出来就可以求出\(ans\) 设\(fp[i]\)表示把第\(i\)张牌打出来的概率 ...
随机推荐
- Matplotlib 简单图例
图例参考:http://matplotlib.org/gallery.html API参考:http://matplotlib.org/api/pyplot_summary.html # -*- co ...
- 将WinForm程序(含多个非托管Dll)合并成一个exe的方法
原文:将WinForm程序(含多个非托管Dll)合并成一个exe的方法 开发程序的时候经常会引用一些第三方的DLL,然后编译生成的exe文件就不能脱离这些DLL独立运行了. ILMerge能把托管dl ...
- 【php增删改查实例】第二十三节 - PHP文件上传
22. PHP文件上传 22.1 资源文件 将这三个东西拷贝项目的根目录. 拷贝完毕后,打开upload.html: 现在,我们在项目的根目录去编写一个upload.php. PHP给我们提供了很多关 ...
- 【php增删改查实例】第十七节 - 用户登录(1)
新建一个login文件,里面存放的就是用户登录的模块. <html> <head> <meta charset="utf-8"> <sty ...
- ubuntu12.04安装mininet
网上安装mininet教程有很多,都是通过git命令安装,但有一个坑,安装到./install.sh时会报错,记录下来 1.通过git 下载mininet git clone git://github ...
- 你真的了解volatile关键字吗?
volatile关键字经常在并发编程中使用,其特性是保证可见性以及有序性,但是关于volatile的使用仍然要小心,这需要明白volatile关键字的特性及实现的原理,这也是本篇文章的主要内容. 一. ...
- windows下pwd、ls、tail-f命令使用
一.问题 习惯了linux命令,在windows上使用cmd没有这些命令时很不习惯. 二.解决办法 2.1 找到这些命令对应的windows命令 ls,对应于windows的dir pwd,对应于wi ...
- FreeRTOS 任务与调度器(2)
在上一篇我们介绍了FreeRTOS任务的一些基本操作和功能,今天我们会介绍一个很好很强大的功能——任务通知 任务通知可以在不同任务之间传递信息,它可以取代二值信号量.计数信号量.事件标志组.深度为1的 ...
- Docker容器学习梳理 - 基础知识(1)
Docker是PaaS 提供商 dotCloud 开源的一个基于 LXC 的高级容器引擎,源代码托管在 Github 上, 基于go语言并遵从Apache2.0协议开源.Docker是通过内核虚拟化技 ...
- PHP从入门到精通(五)
字符串三种声明方式 1."":双引号中可以解析变量"{$a}",双引号中可以使用任何转义字符:2.'':单引号中不可以解析变量,单引号中不可以使用转义字符(但是 ...