UOJ#192. 【UR #14】最强跳蚤
题目链接 http://uoj.ac/problem/192
暑期课第二天
树上问题进阶
具体内容看笔记博客吧
题意
n个节点的树T 边有边权w 求满足(u, v)上所有边权乘积为完全平方数的路径有多少条
看到“所有边权乘积为完全平方数” 想到完全平方数的特殊性
就是分解质因数后 质因数指数都为偶数
然后就想到分解边权质因数+判质路径边权奇偶性
后者由于奇数偶数的和的规律 可以使用抑或
偶就表示为0 奇就表示为一
那么如何存储呢?
状压?
空间之大 状压压不下
所以hash
对每一个要用的质数 取一个 [1, 2 ^ 64] 的随机数
出现一次就抑或一次即可
然后。。。
题意
n个节点的树T 边有边权w 求满足(u, v)上所有边权抑或和为0的路径有多少条
前缀和最常用的两种 一是累加和 二是抑或和
明显可以使用前缀和
又由于 a ^ a = 0
对于一条路径 (路径两端点的lca) 到 (根节点)的那一段抑或两次没啦
所以如果(u, v)上所有边权抑或和为0
那么他们的抑或前缀和相等
以下附莫名被ex扣下3分的辣鸡代码
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <ctime>
#include <map>
using namespace std;
const int N = 2e5 + ;
const int M = 1e4 + ; int n, m;
struct Edge{
int u, v;
long long w;
int next;
}edge[N << ];
int esize, head[N];
long long p[M + ], ps;
bool np[M];
long long num[N];
map<int, long long> rf; inline void addedge(int x, int y, long long z){
edge[++esize] = (Edge){x, y, z, head[x]};
head[x] = esize;
} inline void p_cal(){
for(int i = ; i < M; i++){
if(!np[i]) p[++ps] = i;
for(int j = ; j <= ps && i * p[j] < M; j++){
np[i * p[j]] = ;
if(!(i % p[j])) break;
}
}
} inline void build(int x, int fa){
for(int i = head[x]; i != -; i = edge[i].next){
int v = edge[i].v;
if(v == fa) continue;
num[v] = num[x] ^ edge[i].w;
build(v, x);
}
} int main(){
srand(time(NULL));
scanf("%d", &n);
p_cal();
for(long long i = ; i <= ps; i++)
rf[p[i]] = ((long long)rand() << ) + rand();
//rd续命法
long long res;
int x, y, z;
for(int i = ; i <= n; i++) head[i] = -;
for(int i = , x, y, z; i < n; i++){
scanf("%d%d%d", &x, &y, &z);
res = ;
int tmp = z;
for(int j = ; j <= ps && p[j] * p[j] <= tmp; j++)
while(!(z % p[j]))
res ^= rf[p[j]], z /= p[j];
if(z != ) {
if(!rf[z])
rf[z] = ((long long)rand() << ) + rand();
res ^= rf[z];
}
addedge(x, y, res); addedge(y, x, res);
} build(, -);
sort(num + , num + n + );
long long ans = ;
for(int i = , j; i <= n; i = j){
j = i;
while(num[j] == num[i] && j <= n) j++;
ans += (long long)(j - i) * (j - i - );
}
printf("%lld", ans);
return ;
}
UOJ#192. 【UR #14】最强跳蚤的更多相关文章
- 【uoj#192】[UR #14]最强跳蚤 Hash
题目描述 给定一棵 $n$ 个点的树,边有边权.求简单路径上的边的乘积为完全平方数的点对 $(x,y)\ ,\ x\ne y$ 的数目. 题解 Hash 一个数是完全平方数,当且仅当每个质因子出现次数 ...
- UOJ #192 【UR #14】 最强跳蚤
题目链接:最强跳蚤 这道题本来不想写博客的--但是鉴于自己犯了低级错误,还是写篇博客记载一下. 一开始我的想法和题解里面的算法而比较类似,也是先分解质因数,然后用质因子是否出现偶数次来判断当前这个数是 ...
- 【胡策篇】题解 (UOJ 192 + CF938G + SPOJ DIVCNT2)
和泉纱雾与烟花大会 题目来源: UOJ 192 最强跳蚤 (只改了数据范围) 官方题解: 在这里哦~(说的很详细了 我都没啥好说的了) 题目大意: 求树上各边权乘积是完全平方数的路径数量. 这种从\( ...
- (GDOI2018模拟九)【UOJ#192】【UR#14】最强跳蚤
(开头先Orz myh) 原题目: 在人类和跳蚤的战争初期,人们凭借着地理优势占据了上风——即使是最强壮的跳蚤,也无法一下越过那一堵坚固的城墙. 在经历了惨痛的牺牲后,跳蚤国王意识到再这样下去,跳蚤国 ...
- uoj192 【UR #14】最强跳蚤
题目 和成爷达成一致,被卡随机的话就是过了 考虑一个完全平方数的所有质因子次幂一定是偶数,于是对于每一条边我们都只保留其出现次数为奇数的质因子 注意到有一个点的\(w\leq 80\),于是考虑状压质 ...
- UOJ 【UR #5】怎样跑得更快
[UOJ#62]怎样跑得更快 题面 这个题让人有高斯消元的冲动,但肯定是不行的. 这个题算是莫比乌斯反演的一个非常巧妙的应用(不看题解不会做). 套路1: 因为\(b(i)\)能表达成一系列\(x(i ...
- UOJ192 最强跳蚤
题目链接 problem 给出一个n个点带边权的树,问有多少对\((u,v)\)满足\(u\)到\(v\)路径上边权的乘积为完全平方数. \(n\le 10^5,w\le 10^8\) solutio ...
- UOJ #22 UR #1 外星人
LINK:#22. UR #1 外星人 给出n个正整数数 一个初值x x要逐个对这些数字取模 问怎样排列使得最终结果最大 使结果最大的方案数又多少种? n<=1000,x<=5000. 考 ...
- UOJ.52.[UR #4]元旦激光炮(交互 思路)
题目链接 \(Description\) 交互库中有三个排好序的,长度分别为\(n_a,n_b,n_c\)的数组\(a,b,c\).你需要求出所有元素中第\(k\)小的数.你可以调用至多\(100\) ...
随机推荐
- SQL Server中删除用户时报错,提示:The database principal owns a schema in the database, and cannot be dropped(转载)
Description of the problem: When you tried to drop a user, you got this message: Error: 15138 The da ...
- 4《想成为黑客,不知道这些命令行可不行》(Learn Enough Command Line to Be Dangerous)—目录
我们已经学习过许多处理文件的Unix工具,现在是时候来学习目录了,也就是文件夹(图20).正如我们所见,许多在文件中的开发思想也适用于目录,但同样也有许多区别.
- International Programming Retreat Day(2018.11.17)
时间:2018.11.17地点:北京国华投资大厦
- 马加爵遗书 VS 药家鑫遗书
前言:今天是贰零壹柒年最后一个工作日,亦是2017年12月29日,因为明天就放元旦假了,公司同事比往常相对轻松些.中午吃完午饭,在办公室大家有说有笑,有人说姓马的人都挺牛X啊,比如:马云, ...
- Stencil 基础
Stencil 一个轻量化,渐进式编译器,注意,不是框架. 使用 TypeScript 进行所有操作,这是一个门槛,有一定技术门槛要求. PS:个人强烈推荐所有的前端同学都学习,或至少了解这个超集语言 ...
- 【工作感悟】Android 开发者,如何提升自己的职场竞争力?
前言 该文章是笔者参加 Android 巴士线下交流会成都站 的手写讲稿虚拟场景,所以大家将就看一下. 开始 大家好,我是刘世麟,首先感谢安卓巴士为我们创造了这次奇妙的相遇.现场的氛围也让我十分激动. ...
- 【亲测有效】无法定位链接器!请检查 tools\link.ini 中的配置是否正确的解决方案
在进行易语言静态编译的时候,出现了如下错误: 正在进行名称连接...正在统计需要编译的子程序正在编译...正在生成主程序入口代码程序代码编译成功等待用户输入欲编译到的文件名正在进行名称连接...开始静 ...
- python基础学习笔记(二)
继续第一篇的内容,讲解,python的一些基本的东西. 注释 为了让别人能够更容易理解程序,使用注释是非常有效的,即使是自己回头再看旧代码也是一样. >>> #获得用户名: > ...
- java 计算器实验
1.计算器实验报告 2.https://github.com/xujinxia/text/tree/master 3.实验截图 7+8 清除 六.总结 通过本次实验让我对JFrame类.JPanel类 ...
- 剑指offer:复杂链表的复制
题目描述: 输入一个复杂链表(每个节点中有节点值,以及两个指针,一个指向下一个节点,另一个特殊指针指向任意一个节点),返回结果为复制后复杂链表的head.(注意,输出结果中请不要返回参数中的节点引用, ...