UOJ#192. 【UR #14】最强跳蚤
题目链接 http://uoj.ac/problem/192
暑期课第二天
树上问题进阶
具体内容看笔记博客吧
题意
n个节点的树T 边有边权w 求满足(u, v)上所有边权乘积为完全平方数的路径有多少条
看到“所有边权乘积为完全平方数” 想到完全平方数的特殊性
就是分解质因数后 质因数指数都为偶数
然后就想到分解边权质因数+判质路径边权奇偶性
后者由于奇数偶数的和的规律 可以使用抑或
偶就表示为0 奇就表示为一
那么如何存储呢?
状压?
空间之大 状压压不下
所以hash
对每一个要用的质数 取一个 [1, 2 ^ 64] 的随机数
出现一次就抑或一次即可
然后。。。
题意
n个节点的树T 边有边权w 求满足(u, v)上所有边权抑或和为0的路径有多少条
前缀和最常用的两种 一是累加和 二是抑或和
明显可以使用前缀和
又由于 a ^ a = 0
对于一条路径 (路径两端点的lca) 到 (根节点)的那一段抑或两次没啦
所以如果(u, v)上所有边权抑或和为0
那么他们的抑或前缀和相等
以下附莫名被ex扣下3分的辣鸡代码
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <ctime>
#include <map>
using namespace std;
const int N = 2e5 + ;
const int M = 1e4 + ; int n, m;
struct Edge{
int u, v;
long long w;
int next;
}edge[N << ];
int esize, head[N];
long long p[M + ], ps;
bool np[M];
long long num[N];
map<int, long long> rf; inline void addedge(int x, int y, long long z){
edge[++esize] = (Edge){x, y, z, head[x]};
head[x] = esize;
} inline void p_cal(){
for(int i = ; i < M; i++){
if(!np[i]) p[++ps] = i;
for(int j = ; j <= ps && i * p[j] < M; j++){
np[i * p[j]] = ;
if(!(i % p[j])) break;
}
}
} inline void build(int x, int fa){
for(int i = head[x]; i != -; i = edge[i].next){
int v = edge[i].v;
if(v == fa) continue;
num[v] = num[x] ^ edge[i].w;
build(v, x);
}
} int main(){
srand(time(NULL));
scanf("%d", &n);
p_cal();
for(long long i = ; i <= ps; i++)
rf[p[i]] = ((long long)rand() << ) + rand();
//rd续命法
long long res;
int x, y, z;
for(int i = ; i <= n; i++) head[i] = -;
for(int i = , x, y, z; i < n; i++){
scanf("%d%d%d", &x, &y, &z);
res = ;
int tmp = z;
for(int j = ; j <= ps && p[j] * p[j] <= tmp; j++)
while(!(z % p[j]))
res ^= rf[p[j]], z /= p[j];
if(z != ) {
if(!rf[z])
rf[z] = ((long long)rand() << ) + rand();
res ^= rf[z];
}
addedge(x, y, res); addedge(y, x, res);
} build(, -);
sort(num + , num + n + );
long long ans = ;
for(int i = , j; i <= n; i = j){
j = i;
while(num[j] == num[i] && j <= n) j++;
ans += (long long)(j - i) * (j - i - );
}
printf("%lld", ans);
return ;
}
UOJ#192. 【UR #14】最强跳蚤的更多相关文章
- 【uoj#192】[UR #14]最强跳蚤 Hash
题目描述 给定一棵 $n$ 个点的树,边有边权.求简单路径上的边的乘积为完全平方数的点对 $(x,y)\ ,\ x\ne y$ 的数目. 题解 Hash 一个数是完全平方数,当且仅当每个质因子出现次数 ...
- UOJ #192 【UR #14】 最强跳蚤
题目链接:最强跳蚤 这道题本来不想写博客的--但是鉴于自己犯了低级错误,还是写篇博客记载一下. 一开始我的想法和题解里面的算法而比较类似,也是先分解质因数,然后用质因子是否出现偶数次来判断当前这个数是 ...
- 【胡策篇】题解 (UOJ 192 + CF938G + SPOJ DIVCNT2)
和泉纱雾与烟花大会 题目来源: UOJ 192 最强跳蚤 (只改了数据范围) 官方题解: 在这里哦~(说的很详细了 我都没啥好说的了) 题目大意: 求树上各边权乘积是完全平方数的路径数量. 这种从\( ...
- (GDOI2018模拟九)【UOJ#192】【UR#14】最强跳蚤
(开头先Orz myh) 原题目: 在人类和跳蚤的战争初期,人们凭借着地理优势占据了上风——即使是最强壮的跳蚤,也无法一下越过那一堵坚固的城墙. 在经历了惨痛的牺牲后,跳蚤国王意识到再这样下去,跳蚤国 ...
- uoj192 【UR #14】最强跳蚤
题目 和成爷达成一致,被卡随机的话就是过了 考虑一个完全平方数的所有质因子次幂一定是偶数,于是对于每一条边我们都只保留其出现次数为奇数的质因子 注意到有一个点的\(w\leq 80\),于是考虑状压质 ...
- UOJ 【UR #5】怎样跑得更快
[UOJ#62]怎样跑得更快 题面 这个题让人有高斯消元的冲动,但肯定是不行的. 这个题算是莫比乌斯反演的一个非常巧妙的应用(不看题解不会做). 套路1: 因为\(b(i)\)能表达成一系列\(x(i ...
- UOJ192 最强跳蚤
题目链接 problem 给出一个n个点带边权的树,问有多少对\((u,v)\)满足\(u\)到\(v\)路径上边权的乘积为完全平方数. \(n\le 10^5,w\le 10^8\) solutio ...
- UOJ #22 UR #1 外星人
LINK:#22. UR #1 外星人 给出n个正整数数 一个初值x x要逐个对这些数字取模 问怎样排列使得最终结果最大 使结果最大的方案数又多少种? n<=1000,x<=5000. 考 ...
- UOJ.52.[UR #4]元旦激光炮(交互 思路)
题目链接 \(Description\) 交互库中有三个排好序的,长度分别为\(n_a,n_b,n_c\)的数组\(a,b,c\).你需要求出所有元素中第\(k\)小的数.你可以调用至多\(100\) ...
随机推荐
- python3 installed 安装 pip3
curl -sS https://bootstrap.pypa.io/get-pip.py | sudo python3
- 【php增删改查实例】第十二节 - 数据删除功能
1.单条数据删除 思路:首先,需要也只能允许用户勾选一条数据,然后弹出一个确认框,问用户是否真的要删除?如果是,就把ID传递到PHP,然后写一个delete语句,通过ID去删除即可. 画好了按钮之后, ...
- Jmeter(三十)_TimeShift函数在JSR223中的使用
今天学习一下TimeShift函数在JSR223中的使用方法. 关联之前的一篇时间戳文章:Jmeter(十二)_打印时间戳 首先,创建线程组,在线程组下面创建一个JSR223采样器 选择Groovy语 ...
- VS2010、VS2012、VS2013、VS2015、VS2017各版本产品激活秘钥
Visual Studio 2017(VS2017) 企业版 Enterprise 注册码:NJVYC-BMHX2-G77MM-4XJMR-6Q8QF Visual Studio 2017(VS201 ...
- Linux mount 命令
mount 命令用来挂载文件系统.其基本命令格式为:mount -t type [-o options] device dirdevice:指定要挂载的设备,比如磁盘.光驱等.dir:指定把文件系统挂 ...
- 如何手动写一个Python脚本自动爬取Bilibili小视频
如何手动写一个Python脚本自动爬取Bilibili小视频 国庆结束之余,某个不务正业的码农不好好干活,在B站瞎逛着,毕竟国庆嘛,还让不让人休息了诶-- 我身边的很多小伙伴们在朋友圈里面晒着出去游玩 ...
- React Native 教程:001 - 如何运行官方控件示例 App
原文发表于我的技术博客 本文主要讲解了如何运行 React Native 官方控件示例 App,包含了一些 React Native 的基础知识以及相关环境的配置. 原文发表于我的技术博客 React ...
- 2017乌鲁木齐区域赛D题Fence Building-平面图的欧拉公式
这个题B站上面有这题很完整的分析和证明,你实在不懂,可以看看这个视频 https://www.bilibili.com/video/av19849697?share_medium=android&a ...
- pair project elevator
结对编程——电梯调度 12061181 高孟烨 12061182 郝倩 1.结对编程的优缺点: 优点:结对编程可以结合两个人各自擅长之地,充分发挥两个人各自的优势,两个人一起合作效率会更高.一份工作两 ...
- 《Linux课本》读书笔记 第十七章 模块
设备与模块: 设备类型:块设备(blkdev).字符设备(cdev).网络设备: 模块: 分析hello,world模块代码.Hello_init是模块的入口点,通过module_init()注册到系 ...