MT【228】整数解的个数
求方程$x+y+z=24$的整数解的个数,要求$1\le x\le 5,12\le y\le 18,-1\le z\le12$
解:设$a_r$是方程$X+Y+Z=r$的满足上述要求的整数解的个数,那么$a_r$的母函数是
$f(x)=(x+x^2+x^3+x^4+x^4+x^5)(x^{12}+x^{13}+\cdots+x^{18})(x^{-1}+1+x+x^2+\cdots+x^{12})$
易知$f(x)=x^{12}\dfrac{(1-x^5)(1-x^7)(1-x^{14})}{(1-x)^3}$
$=x^{12}(1-x^5-x^7+x^{12}-x^{14}+x^{19}+x^{21}-x^{26})\sum\limits_{k=0}^{+\infty}{C_{k+2}^2x^k}$
故$x^{24}$前的系数$a_{24}=C_{14}^2-C_9^2-C_7^2+C_2^2=35$
注:
$C_\alpha^k=\dfrac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!}$
取$\alpha=-n$得$C_{-n}^k=\dfrac{-n(-n-1)\cdots(-n-k+1)}{k!}=(-1)^kC_{n+k-1}^k$
故$\dfrac{1}{(1-x)^n}=\sum\limits_{k=0}^{+\infty}{C_{-n}^k(-x)^k}=\sum\limits_{k=0}^{+\infty}{C_{n+k-1}^{n-1}x^k}$
MT【228】整数解的个数的更多相关文章
- 《A First Course in Probability》-chaper1-组合分析-方程整数解的个数
在概率论问题中求解基本事件.某个事件的可能情况数要涉及到组合分析. 而这一部分主要涉及到简单的计数原理和二项式定理.多项式定理. 我们从一个简单的实例入手. 方程的整数解个数: Tom喜欢钓鱼,一直他 ...
- A - Character Encoding HDU - 6397 - 方程整数解-容斥原理
A - Character Encoding HDU - 6397 思路 : 隔板法就是在n个元素间的(n-1)个空中插入k-1个板,可以把n个元素分成k组的方法 普通隔板法 求方程 x+y+z=10 ...
- x+y+z=n的正整数解
题:x+y+z=n,其中(n>=3),求x,y,z的正整数解的个数根据图象法:x>=1,y>=1,x+y<=n-1
- exgcd扩展欧几里得求解的个数
知识储备 扩展欧几里得定理 欧几里得定理 (未掌握的话请移步[扩展欧几里得]) 正题 设存在ax+by=gcd(a,b),求x,y.我们已经知道了用扩欧求解的方法是递归,终止条件是x==1,y==0: ...
- 【数论】[因数个数]P4167樱花
题目描述 求不定方程 \(\frac {1}{x} + \frac{1}{y} = \frac{1}{n!}\)的正整数解的个数 \(n \leq 100^6\) Solution 化简得 \(x * ...
- [BZOJ3751][NOIP2014] 解方程
Description 已知多项式方程:a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m,每两个 ...
- vijos P1915 解方程 加强版
背景 B酱为NOIP 2014出了一道有趣的题目, 可是在NOIP现场, B酱发现数据规模给错了, 他很伤心, 哭得很可怜..... 为了安慰可怜的B酱, vijos刻意挂出来了真实的题目! 描述 已 ...
- NOIP2014 uoj20解方程 数论(同余)
又是数论题 Q&A Q:你TM做数论上瘾了吗 A:没办法我数论太差了,得多练(shui)啊 题意 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, ...
- haligong2016
A 采用递推的方法,由于要到达棋盘上的一个点,只能从左边或者上边过来,根据加法原则,到达某一点的路径数目,就等于到达其相邻的上点和左点的路径数目的总和.所有海盗能达到的点将其路径数置为0即可. #in ...
随机推荐
- FFmpeg在JAVA中的使用以及Process.waitFor()引发的阻塞问题
此文已由作者叶海啸授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. FFmpeg是一个开源免费跨平台的视频和音频流方案,可以快速对音视频流进行多方面的处理,本文主要介绍FFmp ...
- VC++编写简单串口上位机程序
VC++编写简单串口上位机程序 转载: http://blog.sina.com.cn/s/articlelist_1809084904_0_1.html VC++编写简单串口上位机程序 串口通信 ...
- jQuery与js例子
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 如何学习 Webpack
webpack-howto Tip: 本文是 webpack-howto 的原文,我觉得这篇文章写得非常好,确实算是目前学习 webpack 入门的必读文章.直接收录之. 本教程的目标 这是一本教你如 ...
- Matplotlib 简单图例
图例参考:http://matplotlib.org/gallery.html API参考:http://matplotlib.org/api/pyplot_summary.html # -*- co ...
- Luogu4609 FJOI2016 建筑师 第一类斯特林数
题目传送门 题意:给出$N$个高度从$1$到$N$的建筑,问有多少种从左往右摆放这些建筑的方法,使得从左往右看能看到$A$个建筑,从右往左看能看到$B$个建筑.$N \leq 5 \times 10^ ...
- 使用Win PE修改其他硬盘中的系统注册表
使用场景:原来装的机械硬盘系统盘为C盘,后来买了个SSD固态硬盘后,进入WinPE系统后,把原来的C盘整个复制到了固态硬盘,然后用BooticeX64.exe工具在UEFI启动中增加SSD固态硬盘中的 ...
- ElasticSearch实践系列(三):探索数据
前言 经过前两篇文章得实践,我们已经了解了ElasticSearch的基础知识,本篇文章让我来操作一些更真实的数据集.我们可以利用www.json-generator.com/生成如下的文档结构: { ...
- Linux df du 命令
df 命令 检查磁盘空间占用情况(并不能查看某个目录占用的磁盘大小). 命令格式:df [option] -h 以容易理解的格式(给人看的格式)输出文件系统分区使用情况,例如 10kB.10MB.10 ...
- confluence上传文件附件预览乱码问题(linux服务器安装字体操作)
在confluence上传excel文件,预览时发现乱码问题主要是因为再上传文件的时候一般是Windows下的文件上传,而预览的时候,是linux下的环境,由于linux下没有微软字体,所以预览的时候 ...