Secret Milking Machine
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 12324   Accepted: 3589

Description

Farmer John is constructing a new milking machine and wishes to keep it secret as long as possible. He has hidden in it deep within his farm and needs to be able to get to the machine without being detected. He must make a total of T (1 <= T <= 200) trips to the machine during its construction. He has a secret tunnel that he uses only for the return trips.

The farm comprises N (2 <= N <= 200) landmarks (numbered 1..N) connected by P (1 <= P <= 40,000) bidirectional trails (numbered 1..P) and with a positive length that does not exceed 1,000,000. Multiple trails might join a pair of landmarks.

To minimize his chances of detection, FJ knows he cannot use any trail on the farm more than once and that he should try to use the shortest trails.

Help FJ get from the barn (landmark 1) to the secret milking machine (landmark N) a total of T times. Find the minimum possible length of the longest single trail that he will have to use, subject to the constraint that he use no trail more than once. (Note
well: The goal is to minimize the length of the longest trail, not the sum of the trail lengths.)

It is guaranteed that FJ can make all T trips without reusing a trail.

Input

* Line 1: Three space-separated integers: N, P, and T

* Lines 2..P+1: Line i+1 contains three space-separated integers, A_i, B_i, and L_i, indicating that a trail connects landmark A_i to landmark B_i with length L_i.

Output

* Line 1: A single integer that is the minimum possible length of the longest segment of Farmer John's route.

Sample Input

7 9 2
1 2 2
2 3 5
3 7 5
1 4 1
4 3 1
4 5 7
5 7 1
1 6 3
6 7 3

Sample Output

5

Hint

Farmer John can travel trails 1 - 2 - 3 - 7 and 1 - 6 - 7. None of the trails travelled exceeds 5 units in length. It is impossible for Farmer John to travel from 1 to 7 twice without using at least one trail of length 5.

Huge input data,scanf is recommended.

Source

————————————————————————————————————

题意:给定一张无向图,有n个节点p条边,要求在图中从1到n找到t条路径,并且使这t条路径中的最长边最小,输出这个最小的最长边
思路:我们可以二分枚举最小的最长边的长度,然后建图,长度小于等于枚举值的边可以连上,容量为1,建完之后跑最大流,此时最大流的意义是从1到n有几条路径,因此我们二分搜索加最大流便可以求出最长边的最小值。
注意:重边时不能用邻接矩阵保存边值,此题中也不能只取最小值,而是全部保存
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset> using namespace std; #define LL long long
const int INF = 0x3f3f3f3f;
#define MAXN 500 struct node
{
int u, v, next, cap;
} edge[MAXN*MAXN],mp[MAXN*MAXN];
int nt[MAXN], s[MAXN], d[MAXN], visit[MAXN],p[MAXN];
int cnt;
int ct;
int n,m,k; int N;
void init()
{
cnt = 0;
memset(s, -1, sizeof(s));
} void add(int u, int v, int c)
{
edge[cnt].u = u;
edge[cnt].v = v;
edge[cnt].cap = c;
edge[cnt].next = s[u];
s[u] = cnt++;
edge[cnt].u = v;
edge[cnt].v = u;
edge[cnt].cap = c;
edge[cnt].next = s[v];
s[v] = cnt++;
} bool BFS(int ss, int ee)
{
memset(d, 0, sizeof d);
d[ss] = 1;
queue<int>q;
q.push(ss);
while (!q.empty())
{
int pre = q.front();
q.pop();
for (int i = s[pre]; ~i; i = edge[i].next)
{
int v = edge[i].v;
if (edge[i].cap > 0 && !d[v])
{
d[v] = d[pre] + 1;
q.push(v);
}
}
}
return d[ee];
} int DFS(int x, int exp, int ee)
{
if (x == ee||!exp) return exp;
int temp,flow=0;
for (int i = nt[x]; ~i ; i = edge[i].next, nt[x] = i)
{
int v = edge[i].v;
if (d[v] == d[x] + 1&&(temp = (DFS(v, min(exp, edge[i].cap), ee))) > 0)
{
edge[i].cap -= temp;
edge[i ^ 1].cap += temp;
flow += temp;
exp -= temp;
if (!exp) break;
}
}
if (!flow) d[x] = 0;
return flow;
} int Dinic_flow(int mid)
{
init();
for(int i=1; i<=n; i++)
for(int j=p[i]; ~j; j=mp[j].next)
if(mp[j].cap<=mid)
add(mp[j].u,mp[j].v,1);
int ss=1,ee=n;
int ans = 0;
while (BFS(ss, ee))
{
for (int i = 0; i <=ee; i++) nt[i] = s[i];
ans+= DFS(ss, INF, ee);
}
return ans;
} int main()
{
int u,v,c;
while(~scanf("%d%d%d",&n,&m,&k))
{
ct=0;
memset(p,-1,sizeof p);
for(int i=0; i<m; i++)
{
scanf("%d%d%d",&u,&v,&c);
mp[ct].u=u;
mp[ct].v=v;
mp[ct].cap=c;
mp[ct].next=p[u];
p[u]=ct++;
}
int l=0,r=INF;
int ans=0;
while(l<=r)
{
int mid=(l+r)>>1;
if(Dinic_flow(mid)>=k) ans=mid,r=mid-1;
else l=mid+1;
}
printf("%d\n",ans);
}
return 0;
}

  

POJ2455 Secret Milking Machine的更多相关文章

  1. POJ2455 Secret Milking Machine【二分,最大流】

    题目大意:N个点P条边,令存在T条从1到N的路径,求路径上的边权的最大值最小为多少 思路:做了好多二分+最大流的题了,思路很好出 二分出最大边权后建图,跑dinic 问题是....这题是卡常数的好题! ...

  2. POJ 2455 Secret Milking Machine(搜索-二分,网络流-最大流)

    Secret Milking Machine Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9658   Accepted: ...

  3. POJ 2455 Secret Milking Machine(最大流+二分)

    Description Farmer John is constructing a new milking machine and wishes to keep it secret as long a ...

  4. 【bzoj1733】[Usaco2005 feb]Secret Milking Machine 神秘的挤奶机 二分+网络流最大流

    题目描述 Farmer John is constructing a new milking machine and wishes to keep it secret as long as possi ...

  5. [bzoj1733][Usaco2005 feb]Secret Milking Machine 神秘的挤奶机_网络流

    [Usaco2005 feb]Secret Milking Machine 神秘的挤奶机 题目大意:约翰正在制造一台新型的挤奶机,但他不希望别人知道.他希望尽可能久地隐藏这个秘密.他把挤奶机藏在他的农 ...

  6. BZOJ 1733: [Usaco2005 feb]Secret Milking Machine 神秘的挤奶机 网络流 + 二分答案

    Description Farmer John is constructing a new milking machine and wishes to keep it secret as long a ...

  7. 【poj2455】 Secret Milking Machine

    http://poj.org/problem?id=2455 (题目链接) 题意 给出一张n个点,p条边的无向图,需要从1号节点走到n号节点一共T次,每条边只能经过1次,问T次经过的最大的边最小是多少 ...

  8. poj 2455 Secret Milking Machine 二分+最大流 sap

    题目:p条路,连接n个节点,现在需要从节点1到节点n,不重复走过一条路且走t次,最小化这t次中连接两个节点最长的那条路的值. 分析:二分答案,对于<=二分的值的边建边,跑一次最大流即可. #in ...

  9. POJ 2455 - Secret Milking Machine

    原题地址:http://poj.org/problem?id=2455 题目大意:给出一个N个点的无向图,中间有P条边,要求找出从1到n的T条通路,满足它们之间没有公共边,并使得这些通路中经过的最长的 ...

随机推荐

  1. 【笔记】range函数在py3里面的处理及numpy库效率比较【原创】

    今天看了一下,numpy数组操作其中一段代码,主要是测试用纯python和numpy之间的性能问题 在py2环境下,代码如下: def pysum(n): a = range(n) b = range ...

  2. linux 的那些hung 检测机制

    在dmesg中,看到如下信息: [:: seconds [:: seconds [:af: seconds [:af: seconds [:: seconds [:3b: seconds [:: se ...

  3. Echarts绘制横向柱状图

    效果图: 关键配置: 将xAxis的type设置为value, 将yAxis的type设置为category即可实现横向显示

  4. TCP/UDP 常用端口列表

    计算机之间依照互联网传输层TCP/IP协议不同的协议通信,都有不同的对应端口.所以,利用短信(datagram)的UDP,所采用的端口号码不一定和采用TCP的端口号码一样.以下为两种通信协议的端口列表 ...

  5. Lua中面向对象

    一.Lua中类的简单实现: (1)版本——摘自 Cocos2.0中的: --Create an class. function class(classname, super) local superT ...

  6. jdango 使用oss存储

    安装django-aliyun-oss2-storage-0.1.5.tar.gz settings文件添加 MEDIA_ROOT = os.path.join(BASE_DIR,'upload/') ...

  7. 简化Getter 与 Setter 的插件 Lombok

    参考文档:https://www.jianshu.com/p/365ea41b3573 第一步:添加依赖 <dependency> <groupId>org.projectlo ...

  8. Windows Server 2012安装密钥

    Windows Server 2012 Standard 密钥:NB4WH-BBBYV-3MPPC-9RCMV-46XCB Windows Server 2012 StandardCore 密钥:NB ...

  9. gdbserver

    这里写下gdbserver的用法: 两台机子,宿主机A和目标机B. step1: 我们在B上安装gdbserver,在A上编译可执行程序a.out,把a.out拷贝到B上面去. step2: 在A上打 ...

  10. oracle in和exist的区别 not in 和not exist的区别

    in 是把外表和内表作hash join,而exists是对外表作loop,每次loop再对内表进行查询.一般大家都认为exists比in语句的效率要高,这种说法其实是不准确的,这个是要区分环境的. ...