题目:

八皇后问题:在8 X 8的国际象棋上摆放八个皇后,使其不能相互攻击,即任意两个皇后不得处于同一行,同一列或者同意对角线上,求出所有符合条件的摆法。

思路:

1、回溯法

数据结构:

由于8个皇后不能处在同一行,那么肯定每个皇后占据一行,这样可以定义一个数组A[8],数组中第i个数字,即A[i]表示位于第i行的皇后的列号。

满足条件:任意两个皇后不同列,即A[i]!=A[j],任意两个皇后不在同一对角线上,即abs(i-j)!=abs(A[i]-A[j])。

算法:

回溯法,通过深度遍历的形式枚举数组A的所有排列组合,并通过剪枝的形式(判断是否满足上述的条件)来减少不必要的计算量,详见代码。

2、全排列法

思路与字符串排列一样http://www.cnblogs.com/AndyJee/p/4655485.html,只是还需要对每一种排列做判断。

数据结构:

8个皇后不能处在同一行,那么肯定每个皇后占据一行,这样可以定义一个数组A[8],数组中第i个数字,即A[i]表示位于第i行的皇后的列号,先把数组A[8]分别用0-7初始化。

满足条件:由于我们用0-7这7个不同的数字初始化数组,因此任意两个皇后肯定也不同列,那么我们只需要判断每个排列对应的8个皇后中是否有任意两个在同一对角线上即可,即对于数组的两个下标i和j,如果i-j==A[i]-A[j]或i-j==A[j]-A[i],则认为有两个元素位于了同一个对角线上,则该排列不符合条件。

思路:

参考字符串排列:

求整个字符串的排列,可以分成两步:首先求所有可能出现在第一个位置的字符,即把第一个字符和后面的所有字符交换;然后固定第一个字符,求后面所有字符的排序。此时仍把后面的字符看成两部分,第一个字符和后面的字符,然后重复上述步骤。(递归)

然后判断每一种排列是否满足上述添加即可。

代码:

1、回溯法

#include <iostream>
#include <vector>
#include <stdlib.h> using namespace std;
int count=0; bool canPlace(int index,const vector<int> &result){
for(int i=0;i<index;i++){
if(result[index]==result[i] || abs(index-i)==abs(result[index]-result[i]))
return false;
}
return true;
} void queen(int index,vector<int> &result,int N){
if(index==N){
for(int i=0;i<N;i++)
cout<<result[i]<<" ";
cout<<endl;
count++;
return;
}
for(int i=0;i<N;i++){
result[index]=i;
if(canPlace(index,result))
queen(index+1,result,N);
}
} int main()
{
int n=8;
vector<int> result; for(int i=0;i<n;i++)
result.push_back(i);
queen(0,result,n);
cout<<count<<endl;
return 0;
}

2、全排列法

#include <iostream>
#include <vector>
#include <stdlib.h> using namespace std;
int count=0; void swap(int *a,int *b){
int tmp=*a;
*a=*b;
*b=tmp;
} void queen_permutation(vector<int> &result,int index,int len){
bool can=true;
if(index==len-1){
for(int i=0;i<len;i++){
for(int j=i+1;j<len;j++){
if(i-j==result[i]-result[j] || i-j==result[j]-result[i]){
can=false;
break;
}
}
if(can==false)
break;
}
if(can){
for(int i=0;i<len;i++)
cout<<result[i];
cout<<endl;
count++;
}
}
else{
for(int i=index;i<len;i++){
swap(result[index],result[i]);
queen_permutation(result,index+1,len);
swap(result[index],result[i]);
}
}
} int main()
{
int n=8;
vector<int> result; for(int i=0;i<n;i++)
result.push_back(i);
queen_permutation(result,0,n);
cout<<count<<endl;
return 0;
}

(算法)N皇后问题的更多相关文章

  1. 回溯算法————n皇后、素数串

    回溯就是算法是搜索算法中一种控制策略,是一个逐个试探的过程.在试探的过程中,如果遇到错误的选择,就会回到上一步继续选择下一种走法,一步一步的进行直到找到解或者证明无解为止. 如下是一个经典回溯问题n皇 ...

  2. 算法——八皇后问题(eight queen puzzle)之回溯法求解

    八皇后谜题是经典的一个问题,其解法一共有种! 其定义: 首先定义一个8*8的棋盘 我们有八个皇后在手里,目的是把八个都放在棋盘中 位于皇后的水平和垂直方向的棋格不能有其他皇后 位于皇后的斜对角线上的棋 ...

  3. [算法] N 皇后

    N皇后问题是一个经典的问题,在一个N*N的棋盘上放置N个皇后,每行一个并使其不能互相攻击(同一行.同一列.同一斜线上的皇后都会自动攻击). 一. 求解N皇后问题是算法中回溯法应用的一个经典案例 回溯算 ...

  4. JS算法之八皇后问题(回溯法)

    八皇后这个经典的算法网上有很多种思路,我学习了之后自己实现了一下,现在大概说说我的思路给大家参考一下,也算记录一下,以免以后自己忘了要重新想一遍. 八皇后问题 八皇后问题,是一个古老而著名的问题,是回 ...

  5. 回溯算法 - n 皇后问题

    (1)问题描述 在 n × n 格的棋盘上放置彼此不受攻击的 n 个皇后.按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子.n 后问题等价于在 n × n 的棋盘上放置 n 个 ...

  6. 7, java数据结构和算法: 八皇后问题分析和实现 , 递归回溯

    什么是八皇后问题: 指的是,在一个8 * 8的棋盘中, 放置8个棋子, 保证这8个棋子相互之间, 不在同一行,同一列,同一斜线, 共有多少种摆法? 游戏连接: http://www.4399.com/ ...

  7. noj算法 8皇后打印 回溯法

    描述: 输出8皇后问题所有结果. 输入: 没有输入. 输出: 每个结果第一行是No n:的形式,n表示输出的是第几个结果:下面8行,每行8个字符,‘A’表示皇后,‘.’表示空格.不同的结果中,先输出第 ...

  8. 算法——n皇后问题

    n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 给定一个整数 n,返回所有不同的 n 皇后问题的解决方案. 每一种解法包含一个明确的 n 皇后问题的棋 ...

  9. 洛谷 P1219 八皇后【经典DFS,温习搜索】

    P1219 八皇后 题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序 ...

  10. 【学习总结】java数据结构和算法-第一章-内容介绍和授课方式

    总目录链接 [学习总结]尚硅谷2019java数据结构和算法 github:javaDSA 目录 几个经典算法面试题 算法和数据结构的重要性 几个经典算法面试题 字符串匹配 暴力法:慢 kmp算法:更 ...

随机推荐

  1. tcpdump tutorial

    tcpdump tutorial */--> UP | HOME tcpdump tutorial Table of Contents 1 Options 2 Basic Usage 3 Com ...

  2. MornUI 源码阅读笔记

    1. label的mouseChildren属性为true,但label本身是不需要监听textfield的任何事件的, 个人猜测是为了给TextInput, TextArea用的,因为后两者需要监听 ...

  3. pg psql命令

    linux下使用psql命令操作数据库 下面主要用到了insert into  ,pg_dump  , pg_restore 命令 按步骤走 su postgres                   ...

  4. 【原创】搭建Nginx(负载均衡)+Redis(Session共享)+Tomcat集群

    为什么移除首页?哪里不符合要求?倒是回我邮件啊! 一.环境搭建 Linux下Vagrant搭建Tomcat7.Java7 二.Nginx的安装配置与测试 *虚拟机下转至root sudo -i 1)下 ...

  5. 基数排序/Go实现

    package main import ( "fmt" ) type Radix struct { length int //序列中最大数的位数 radix [][]int //0 ...

  6. python字典概述

    字典 1.    概述 字典是一个无序的数据集合,序列类型用有序的数字键做索引将数据以数组的形式存储. 在字典中能获得的有序集合只能是键的集合或者是值得集合,方法keys()或者value()返回一个 ...

  7. Tex使用

    表格标题改变成中文的"表": \renewcommand{\tablename}{表} 同样图片的Figure改为中文的“图”: \renewcommand{\figurename ...

  8. tcpdump dns包(linux高性能编程读书笔记2)

      tcpdump -i eth0 -nt -s 500 port domain host -t A www.baidu.com www.baidu.com is an alias for www.a ...

  9. BITED-Windows8应用开发学习札记之二:Win8应用常用视图设计

    感觉自我表述能力有欠缺,技术也不够硬,所以之后的Windows8应用开发学习札记的文章就偏向于一些我认为较难的地方和重点了多有抱歉. 上节课是入门,这节课就已经开始进行视图设计了. Windows应用 ...

  10. 为operamasks增加HTML扩展方式的组件调用

    #为operamasks增加HTML扩展方式的组件调用 ##背景 之前的[博文](http://www.cnblogs.com/p2227/p/3540858.html)中有提及到,发现easyui中 ...