12 Using_explain_plan
The row source tree is the core of the execution plan. The tree shows the following information:
An ordering of the tables referenced by the statement
An access method for each table mentioned in the statement
A join method for tables affected by join operations in the statement
Data operations like filter, sort, or aggregation 注意查询计划, 例如:
For example, in the following explain plan, the last step is a very unselective range scan that is executed 76563 times,
accesses 11432983 rows, throws away 99% of them, and retains 76563 rows. Why access 11432983 rows to realize that only 76563 rows are needed?
Rows Execution Plan
-------- ----------------------------------------------------
12 SORT AGGREGATE
2 SORT GROUP BY
76563 NESTED LOOPS
76575 NESTED LOOPS
19 TABLE ACCESS FULL CN_PAYRUNS_ALL
76570 TABLE ACCESS BY INDEX ROWID CN_POSTING_DETAILS_ALL
76570 INDEX RANGE SCAN (object id 178321)
76563 TABLE ACCESS BY INDEX ROWID CN_PAYMENT_WORKSHEETS_ALL
11432983 INDEX RANGE SCAN (object id 186024) 用 explain 来评估, 评估完以后, 要实测一下, 看执行是否满足要求 如何使用 explain (我们一般不这么用, 直接用 set autotrace on 或者 通过工具提供的自动就能看到)
EXPLAIN PLAN FORSELECT last_name FROM employees; EXPLAIN PLAN
SET STATEMENT_ID = 'st1' FOR -- 指定你刚刚执行的statement id, 方便在plan table 中查找到你刚刚执行的statement
SELECT last_name FROM employees; 直接看 reading EX:
SELECT phone_number FROM employees
WHERE phone_number LIKE '650%';
---------------------------------------
| Id | Operation | Name |
---------------------------------------
| 0 | SELECT STATEMENT | |
| 1 | TABLE ACCESS FULL| EMPLOYEES |
---------------------------------------
This plan shows execution of a SELECT statement. The table employees is accessed using a full table scan.
Every row in the table employees is accessed, and the WHERE clause criteria is evaluated for every row.
The SELECT statement returns the rows meeting the WHERE clause criteria. Viewing Parallel Execution with EXPLAIN PLAN {先不考虑并行, 感觉用到不多} 并行计划与普通计划的不同, 基本上普通计划与并行计划是一样的, 但是也少部分地方不一样, 比如下边的多表连接
普通计划: 多表连接时, 肯定是以小表作为主表(drive table)
并行计划: 多表连接时, 要以大表最为驱动表(主表)
一般, 只有数据量非常巨大的情况, 才考虑使用并行查询. EX: CREATE TABLE emp2 AS SELECT * FROM employees;
ALTER TABLE emp2 PARALLEL 2; EXPLAIN PLAN FOR
SELECT SUM(salary) FROM emp2 GROUP BY department_id;
SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY()); -- 查看对应的执行计划 --------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU) | TQ |IN-OUT| PQ Distrib |
--------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 107 | 2782 | 3 (34) | | | |
| 1 | PX COORDINATOR | | | | | | | |
| 2 | PX SEND QC (RANDOM) | :TQ10001 | 107 | 2782 | 3 (34) | Q1,01 | P->S | QC (RAND) |
| 3 | HASH GROUP BY | | 107 | 2782 | 3 (34) | Q1,01 | PCWP | |
| 4 | PX RECEIVE | | 107 | 2782 | 3 (34) | Q1,01 | PCWP | |
| 5 | PX SEND HASH | :TQ10000 | 107 | 2782 | 3 (34) | Q1,00 | P->P | HASH |
| 6 | HASH GROUP BY | | 107 | 2782 | 3 (34) | Q1,00 | PCWP | |
| 7 | PX BLOCK ITERATOR | | 107 | 2782 | 2 (0) | Q1,00 | PCWP | |
| 8 | TABLE ACCESS FULL| EMP2 | 107 | 2782 | 2 (0) | Q1,00 | PCWP | |
--------------------------------------------------------------------------------------------------------
The table EMP2 is scanned in parallel by one set of slaves while the aggregation for the GROUP BY is done by the second set.
The PX BLOCK ITERATOR row source represents the splitting up of the table EMP2 into pieces so as to divide the scan workload
between the parallel scan slaves. The PX SEND and PX RECEIVE row sources represent the pipe that connects the two slave sets
as rows flow up from the parallel scan, get repartitioned through the HASH table queue, and then read by and aggregated on the top slave set.
The PX SEND QC row source represents the aggregated values being sent to the QC in random (RAND) order.
The PX COORDINATOR row source represents the QC or Query Coordinator which controls and schedules the parallel plan appearing below it in the plan tree. Viewing Bitmap Indexes with EXPLAIN PLAN {先不考虑并行, bitmap索引在OLTP中不考虑}
EX:
SELECT * FROM t
WHERE c1 = 2
AND c2 <> 6
OR c3 BETWEEN 10 AND 20; SELECT STATEMENT
TABLE ACCESS T BY INDEX ROWID
BITMAP CONVERSION TO ROWID
BITMAP OR
BITMAP MINUS
BITMAP MINUS
BITMAP INDEX C1_IND SINGLE VALUE
BITMAP INDEX C2_IND SINGLE VALUE
BITMAP INDEX C2_IND SINGLE VALUE
BITMAP MERGE
BITMAP INDEX C3_IND RANGE SCAN 12.9 Viewing Partitioned Objects with EXPLAIN PLAN
RANGE Partitioning
CREATE TABLE emp_range
PARTITION BY RANGE(hire_date)
(
PARTITION emp_p1 VALUES LESS THAN (TO_DATE('1-JAN-1992','DD-MON-YYYY')),
PARTITION emp_p2 VALUES LESS THAN (TO_DATE('1-JAN-1994','DD-MON-YYYY')),
PARTITION emp_p3 VALUES LESS THAN (TO_DATE('1-JAN-1996','DD-MON-YYYY')),
PARTITION emp_p4 VALUES LESS THAN (TO_DATE('1-JAN-1998','DD-MON-YYYY')),
PARTITION emp_p5 VALUES LESS THAN (TO_DATE('1-JAN-2001','DD-MON-YYYY'))
)
AS SELECT * FROM employees;
EX 1 :
EXPLAIN PLAN FOR
SELECT * FROM emp_range;
---------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost | Pstart| Pstop |
---------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 105 | 13965 | 2 | | |
| 1 | PARTITION RANGE ALL| | 105 | 13965 | 2 | 1 | 5 |
| 2 | TABLE ACCESS FULL | EMP_RANGE | 105 | 13965 | 2 | 1 | 5 |
---------------------------------------------------------------------------------
In this example, the partition iterator covers all partitions (option ALL), because a predicate
was not used for pruning. The PARTITION_START and PARTITION_STOP columns of the PLAN_TABLE show access to all partitions from 1 to 5.
EX 2 :
EXPLAIN PLAN FOR
SELECT * FROM emp_range
WHERE hire_date >= TO_DATE('1-JAN-1996','DD-MON-YYYY');
--------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost | Pstart| Pstop |
--------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 3 | 399 | 2 | | |
| 1 | PARTITION RANGE ITERATOR| | 3 | 399 | 2 | 4 | 5 |
|* 2 | TABLE ACCESS FULL | EMP_RANGE | 3 | 399 | 2 | 4 | 5 |
--------------------------------------------------------------------------------------
In the previous example, the partition row source iterates from partition 4 to 5 because the database prunes the other partitions using a predicate on hire_date
EX 3 :
EXPLAIN PLAN FOR
SELECT * FROM emp_range
WHERE hire_date < TO_DATE('1-JAN-1992','DD-MON-YYYY');
------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost | Pstart| Pstop |
------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 133 | 2 | | |
| 1 | PARTITION RANGE SINGLE| | 1 | 133 | 2 | 1 | 1 |
|* 2 | TABLE ACCESS FULL | EMP_RANGE | 1 | 133 | 2 | 1 | 1 |
------------------------------------------------------------------------------------
In the previous example, only partition 1 is accessed and known at compile time; thus, there is no need for a partition row source.
Hash Partitioning
Oracle Database displays the same information for hash partitioned objects, except the partition row source name is
PARTITION HASH instead of PARTITION RANGE. Also, with hash partitioning, pruning is only possible using equality or IN-list predicates.
还有一些其他类型的, 目前忽略,比如混合Partitioning PLAN_TABLE Columns
PLAN_TABLE 有哪些内容, 可以查看这, 这有详细文档
The row source tree is the core of the execution plan. The tree shows the following information:
An ordering of the tables referenced by the statement
An access method for each table mentioned in the statement
A join method for tables affected by join operations in the statement
Data operations like filter, sort, or aggregation 注意查询计划, 例如:
For example, in the following explain plan, the last step is a very unselective range scan that is executed 76563 times,
accesses 11432983 rows, throws away 99% of them, and retains 76563 rows. Why access 11432983 rows to realize that only 76563 rows are needed?
Rows Execution Plan
-------- ----------------------------------------------------
12 SORT AGGREGATE
2 SORT GROUP BY
76563 NESTED LOOPS
76575 NESTED LOOPS
19 TABLE ACCESS FULL CN_PAYRUNS_ALL
76570 TABLE ACCESS BY INDEX ROWID CN_POSTING_DETAILS_ALL
76570 INDEX RANGE SCAN (object id 178321)
76563 TABLE ACCESS BY INDEX ROWID CN_PAYMENT_WORKSHEETS_ALL
11432983 INDEX RANGE SCAN (object id 186024) 用 explain 来评估, 评估完以后, 要实测一下, 看执行是否满足要求 如何使用 explain (我们一般不这么用, 直接用 set autotrace on 或者 通过工具提供的自动就能看到)
EXPLAIN PLAN FORSELECT last_name FROM employees; EXPLAIN PLAN
SET STATEMENT_ID = 'st1' FOR -- 指定你刚刚执行的statement id, 方便在plan table 中查找到你刚刚执行的statement
SELECT last_name FROM employees; 直接看 reading EX:
SELECT phone_number FROM employees
WHERE phone_number LIKE '650%';
---------------------------------------
| Id | Operation | Name |
---------------------------------------
| 0 | SELECT STATEMENT | |
| 1 | TABLE ACCESS FULL| EMPLOYEES |
---------------------------------------
This plan shows execution of a SELECT statement. The table employees is accessed using a full table scan.
Every row in the table employees is accessed, and the WHERE clause criteria is evaluated for every row.
The SELECT statement returns the rows meeting the WHERE clause criteria. Viewing Parallel Execution with EXPLAIN PLAN {先不考虑并行, 感觉用到不多} 并行计划与普通计划的不同, 基本上普通计划与并行计划是一样的, 但是也少部分地方不一样, 比如下边的多表连接
普通计划: 多表连接时, 肯定是以小表作为主表(drive table)
并行计划: 多表连接时, 要以大表最为驱动表(主表)
一般, 只有数据量非常巨大的情况, 才考虑使用并行查询. EX: CREATE TABLE emp2 AS SELECT * FROM employees;
ALTER TABLE emp2 PARALLEL 2; EXPLAIN PLAN FOR
SELECT SUM(salary) FROM emp2 GROUP BY department_id;
SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY()); -- 查看对应的执行计划 --------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU) | TQ |IN-OUT| PQ Distrib |
--------------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 107 | 2782 | 3 (34) | | | |
| 1 | PX COORDINATOR | | | | | | | |
| 2 | PX SEND QC (RANDOM) | :TQ10001 | 107 | 2782 | 3 (34) | Q1,01 | P->S | QC (RAND) |
| 3 | HASH GROUP BY | | 107 | 2782 | 3 (34) | Q1,01 | PCWP | |
| 4 | PX RECEIVE | | 107 | 2782 | 3 (34) | Q1,01 | PCWP | |
| 5 | PX SEND HASH | :TQ10000 | 107 | 2782 | 3 (34) | Q1,00 | P->P | HASH |
| 6 | HASH GROUP BY | | 107 | 2782 | 3 (34) | Q1,00 | PCWP | |
| 7 | PX BLOCK ITERATOR | | 107 | 2782 | 2 (0) | Q1,00 | PCWP | |
| 8 | TABLE ACCESS FULL| EMP2 | 107 | 2782 | 2 (0) | Q1,00 | PCWP | |
--------------------------------------------------------------------------------------------------------
The table EMP2 is scanned in parallel by one set of slaves while the aggregation for the GROUP BY is done by the second set.
The PX BLOCK ITERATOR row source represents the splitting up of the table EMP2 into pieces so as to divide the scan workload
between the parallel scan slaves. The PX SEND and PX RECEIVE row sources represent the pipe that connects the two slave sets
as rows flow up from the parallel scan, get repartitioned through the HASH table queue, and then read by and aggregated on the top slave set.
The PX SEND QC row source represents the aggregated values being sent to the QC in random (RAND) order.
The PX COORDINATOR row source represents the QC or Query Coordinator which controls and schedules the parallel plan appearing below it in the plan tree. Viewing Bitmap Indexes with EXPLAIN PLAN {先不考虑并行, bitmap索引在OLTP中不考虑}
EX:
SELECT * FROM t
WHERE c1 = 2
AND c2 <> 6
OR c3 BETWEEN 10 AND 20; SELECT STATEMENT
TABLE ACCESS T BY INDEX ROWID
BITMAP CONVERSION TO ROWID
BITMAP OR
BITMAP MINUS
BITMAP MINUS
BITMAP INDEX C1_IND SINGLE VALUE
BITMAP INDEX C2_IND SINGLE VALUE
BITMAP INDEX C2_IND SINGLE VALUE
BITMAP MERGE
BITMAP INDEX C3_IND RANGE SCAN 12.9 Viewing Partitioned Objects with EXPLAIN PLAN
RANGE Partitioning
CREATE TABLE emp_range
PARTITION BY RANGE(hire_date)
(
PARTITION emp_p1 VALUES LESS THAN (TO_DATE('1-JAN-1992','DD-MON-YYYY')),
PARTITION emp_p2 VALUES LESS THAN (TO_DATE('1-JAN-1994','DD-MON-YYYY')),
PARTITION emp_p3 VALUES LESS THAN (TO_DATE('1-JAN-1996','DD-MON-YYYY')),
PARTITION emp_p4 VALUES LESS THAN (TO_DATE('1-JAN-1998','DD-MON-YYYY')),
PARTITION emp_p5 VALUES LESS THAN (TO_DATE('1-JAN-2001','DD-MON-YYYY'))
)
AS SELECT * FROM employees;
EX 1 :
EXPLAIN PLAN FOR
SELECT * FROM emp_range;
---------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost | Pstart| Pstop |
---------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 105 | 13965 | 2 | | |
| 1 | PARTITION RANGE ALL| | 105 | 13965 | 2 | 1 | 5 |
| 2 | TABLE ACCESS FULL | EMP_RANGE | 105 | 13965 | 2 | 1 | 5 |
---------------------------------------------------------------------------------
In this example, the partition iterator covers all partitions (option ALL), because a predicate
was not used for pruning. The PARTITION_START and PARTITION_STOP columns of the PLAN_TABLE show access to all partitions from 1 to 5.
EX 2 :
EXPLAIN PLAN FOR
SELECT * FROM emp_range
WHERE hire_date >= TO_DATE('1-JAN-1996','DD-MON-YYYY');
--------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost | Pstart| Pstop |
--------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 3 | 399 | 2 | | |
| 1 | PARTITION RANGE ITERATOR| | 3 | 399 | 2 | 4 | 5 |
|* 2 | TABLE ACCESS FULL | EMP_RANGE | 3 | 399 | 2 | 4 | 5 |
--------------------------------------------------------------------------------------
In the previous example, the partition row source iterates from partition 4 to 5 because the database prunes the other partitions using a predicate on hire_date
EX 3 :
EXPLAIN PLAN FOR
SELECT * FROM emp_range
WHERE hire_date < TO_DATE('1-JAN-1992','DD-MON-YYYY');
------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost | Pstart| Pstop |
------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 133 | 2 | | |
| 1 | PARTITION RANGE SINGLE| | 1 | 133 | 2 | 1 | 1 |
|* 2 | TABLE ACCESS FULL | EMP_RANGE | 1 | 133 | 2 | 1 | 1 |
------------------------------------------------------------------------------------
In the previous example, only partition 1 is accessed and known at compile time; thus, there is no need for a partition row source.
Hash Partitioning
Oracle Database displays the same information for hash partitioned objects, except the partition row source name is
PARTITION HASH instead of PARTITION RANGE. Also, with hash partitioning, pruning is only possible using equality or IN-list predicates.
还有一些其他类型的, 目前忽略,比如混合Partitioning PLAN_TABLE Columns
PLAN_TABLE 有哪些内容, 可以查看这, 这有详细文档
12 Using_explain_plan的更多相关文章
- python 各模块
01 关于本书 02 代码约定 03 关于例子 04 如何联系我们 1 核心模块 11 介绍 111 内建函数和异常 112 操作系统接口模块 113 类型支持模块 114 正则表达式 115 语言支 ...
- Python Standard Library
Python Standard Library "We'd like to pretend that 'Fredrik' is a role, but even hundreds of vo ...
- 在mybatis中写sql语句的一些体会
本文会使用一个案例,就mybatis的一些基础语法进行讲解.案例中使用到的数据库表和对象如下: article表:这个表存放的是文章的基础信息 -- ------------------------- ...
- AndroidStudio — Error:Failed to resolve: junit:junit:4.12错误解决
原博客:http://blog.csdn.net/u013443865/article/details/50243193 最近使用AndroidStudio出现以下问题: 解决:打开app下的buil ...
- 读过MBA的CEO更自私?《哈佛商业评论》2016年第12期。4星
老牌管理杂志.每期都值得精度.本期我还是给4星. 以下是本书中的一些内容的摘抄: 1:他们发现在Airbnb上,如果客人姓名听起来像黑人,那么比名字像白人的客人的接受率会低16%.#45 2:对立组织 ...
- 12个小技巧,让你高效使用Eclipse
集成开发环境(IDE)让应用开发更加容易.它们强调语法,让你知道是否你存在编译错误,在众多的其他事情中允许你单步调试代码.像所有的IDE一 样,Eclipse也有快捷键和小工具,这些会让您感觉轻松许多 ...
- 第12章 Linux系统管理
1. 进程管理 1.1 进程查看 (1)进程简介 进程是正在执行的一个程序或命令(如ls命令也是一个进程),每个进程都是一个运行的实体,都有自己的地址空间,并占用一定的系统资源. (2)进程管理的作用 ...
- Jexus Web Server 完全傻瓜化图文配置教程(基于Ubuntu 12.04.3 64位)[内含Hyper-v 2012虚拟机镜像下载地址]
1. 前言 近日有感许多新朋友想尝试使用Jexus,不过绝大多数都困惑徘徊在Linux如何安装啊,如何编译Mono啊,如何配置Jexus啊...等等基础问题,于是昨日向宇内流云兄提议,不如搞几个配置好 ...
- CSharpGL(12)用T4模板生成CSSL及其renderer代码
CSharpGL(12)用T4模板生成CSSL及其renderer代码 2016-08-13 由于CSharpGL一直在更新,现在这个教程已经不适用最新的代码了.CSharpGL源码中包含10多个独立 ...
随机推荐
- LINQ TO DATATABLE/DATASET基本操作之-简单查询
废话不说,直接贴上代码: 其中:SerchLinqData();方法查询数据并返回一个datatable表.为数据源. #region 绑定数据 public static string BindDt ...
- 过滤器(Filter)案例:检测用户是否登陆的过滤器
*****检测用户是否登陆的过滤器:不需要用户跳转到每个页面都需要登陆,访问一群页面时,只在某个页面上登陆一次,就可以访问其他页面: 1.自定义抽象的 HttpFilter类, 实现自 Filter ...
- 20150602_Andriod 向窗体传递参数
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:too ...
- Dual Core CPU
Dual Core CPU Time Limit: 15000MS Memory Limit: 131072K Total Submissions: 20935 Accepted: 9054 Case ...
- C#'~'按位取反运算符的使用
按位取反运算符是按照二进制的每一位取反,比如byte类型,~0的结果就是255. 该功能可以在mask中做一些反转操作 如下代码,a存放了2,4,8三个值.用按位取反'~'运算符反转 打印结果是 fa ...
- EditorWindow窗口大小锁死后没有边框的解决方法
var window = GetWindow(typeof(MyWindow), true); window.minSize = , ); window.maxSize = window.minSiz ...
- C4D to Unity3D插件C2U Tool开源发布!简化你的工作流
Unity早期有对.c4d文件进行支持,但缩放问题,不支持顶点色,以及目标机器必须安装C4D等都极为蛋疼,这是这款工具开发的初衷之一.C2U工具解决了传统FBX导出的诸多问题,以及脚本链接,Shade ...
- 华东交通大学2016年ACM“双基”程序设计竞赛 1010
Problem Description LB是个十分喜欢钻研的人,对什么事都要搞明白.有一天他学习到了阶乘,他十分喜欢,所以他在想一个问题.如果给定一个数n,求n!能不能被2016整除.LB算了好久都 ...
- 快速编译system.img、userdata.img、boot.img的方法
快速编译system.img和boot.img的方法 快速编译system.img,可以使用这个命令: #make systemimage 快速编译boot.img,可以使用以下命令: #make b ...
- JDBC批量处理
转载自http://www.cnblogs.com/xdp-gacl/p/3983253.html 在实际的项目开发中,有时候需要向数据库发送一批SQL语句执行,这时应避免向数据库一条条的发送执行,而 ...