FZU 2105 Digits Count(位数计算)
Description |
题目描述 |
Given N integers A={A[0],A[1],...,A[N-1]}. Here we have some operations: Operation 1: AND opn L R Here opn, L and R are integers. For L≤i≤R, we do A[i]=A[i] AND opn (here "AND" is bitwise operation). Operation 2: OR opn L R Here opn, L and R are integers. For L≤i≤R, we do A[i]=A[i] OR opn (here "OR" is bitwise operation). Operation 3: XOR opn L R Here opn, L and R are integers. For L≤i≤R, we do A[i]=A[i] XOR opn (here "XOR" is bitwise operation). Operation 4: SUM L R We want to know the result of A[L]+A[L+1]+...+A[R]. Now can you solve this easy problem? |
给定N个整数A={A[0],A[1],...,A[N-1]}。下面有一些操作。 操作1:AND opn L R 其中opn,L和R都是整数。 对于L≤i≤R,我们使A[i]=A[i] AND opn(这里的"AND"是位运算)。 操作2:OR opn L R 其中opn,L和R都是整数。 对于L≤i≤R,我们使A[i]=A[i] OR opn(这里的"OR"是位运算)。 操作3:XOR opn L R 其中opn,L和R都是整数。 对于L≤i≤R,我们使A[i]=A[i] XOR opn(这里的"XOR"是位运算)。 操作4:SUM L R 我们想要知道A[L]+A[L+1]+...+A[R]的值。 现在,你能解决这个简单的问题吗? |
Input |
输入 |
The first line of the input contains an integer T, indicating the number of test cases. (T≤100) Then T cases, for any case, the first line has two integers n and m (1≤n≤1,000,000, 1≤m≤100,000), indicating the number of elements in A and the number of operations. Then one line follows n integers A[0], A[1], ..., A[n-1] (0≤A[i]<16,0≤i<n). Then m lines, each line must be one of the 4 operations above. (0≤opn≤15) |
第一行有一个整数T,表示测试样例的数量。(T≤100) 后面有T个样例,每个样例的第一行有2个整数n和m(1≤n≤1,000,000, 1≤m≤100,000),表示元素数量与操作次数。 下一行有n个整数A[0], A[1], ..., A[n-1] (0≤A[i]<16,0≤i<n)。 接着m行,每行都是上述4种操作的其中一个。(0≤opn≤15) |
Output |
输出 |
For each test case and for each "SUM" operation, please output the result with a single line. |
对于每个测试样例的每个"SUM"操作,都要输出到单独的一行。 |
Sample Input - 输入样例 |
Sample Output - 输出样例 |
1 4 4 1 2 4 7 SUM 0 2 XOR 5 0 0 OR 6 0 3 SUM 0 2 |
7 18 |
【题解】
单纯的线段树。
利用线段树查找快速的特点保存元素,对于某段区间内相同状态的元素进行合并。
进行操作的时候不断查找,直到可操作的区间。因为数据都是非负整数,所以可以用负数标记元素不同的区间。
PS:状态发生变化的时候都要下压,注意深入的方向。
PS2:简单的运算速度是高于开辟空间的速度,所以没必要把线段树每个节点的左右区间都记录下来。
PSP:开辟元素数量4倍的空间一定够用。
【代码 C++】
#include<cstdio>
int data[ << ], opn, L, R;
char ts[];
int build(int data_i, int L, int R){//[L, R]
if (L == R) scanf("%d", &data[data_i]);
else{
int mid = (L + R) >> ;// [L, mid] (mid, R]
L = build(data_i << | , L, mid);
R = build(data_i + << , mid + , R);
if (L == R) data[data_i] = L;
else data[data_i] = -;
}
return data[data_i];
}
int bitwise_peration(int data_i, int L_now, int R_now){
if (data[data_i] != - && L <= L_now && R_now <= R){
if (*ts == 'A') data[data_i] &= opn;
else if (*ts == 'O') data[data_i] |= opn;
else if (*ts == 'X') data[data_i] ^= opn;
}
else{
if (data[data_i] != -) data[data_i << | ] = data[data_i + << ] = data[data_i];
int mid = (R_now + L_now) >> ;
if (R <= mid){// goto Right
L_now = bitwise_peration(data_i << | , L_now, mid);
R_now = data[data_i + << ];
}
else if (mid < L){// goto Left
L_now = data[data_i << | ];
R_now = bitwise_peration(data_i + << , mid + , R_now);
}
else{
L_now = bitwise_peration(data_i << | , L_now, mid);
R_now = bitwise_peration(data_i + << , mid + , R_now);
}
if (L_now == R_now) data[data_i] = L_now;
else data[data_i] = -;
}
return data[data_i];
}
int sum(int data_i, int L_now, int R_now){
if (data[data_i] != - && L <= L_now && R_now <= R){
return data[data_i] * (R_now - L_now + );
}
if (data[data_i] != -) data[data_i << | ] = data[data_i + << ] = data[data_i];
int mid = (R_now + L_now) >> ;
if (R <= mid) return sum(data_i << | , L_now, mid);
if (mid < L) return sum(data_i + << , mid + , R_now);
return sum(data_i << | , L_now, mid) + sum(data_i + << , mid + , R_now);
}
int main(){
int t, m, n, i;
for (scanf("%d", &t); t; --t){
scanf("%d%d", &n, &m);
--n;
build(, , n);
while (m--){
scanf("%s", ts);
if (*ts == 'S'){
scanf("%d%d", &L, &R);
printf("%d\n", sum(, , n));
}
else{
scanf("%d%d%d", &opn, &L, &R);
bitwise_peration(, , n);
}
}
}
return ;
}
#include<cstdio>
int L, R;
char data[], opn, ts[];
int read_g(){// 输入挂
int add = getchar() - '';
int a = getchar();
while (a >= '' && a <= '') add = add * + a - '', a = getchar();
return add;
}
int build(int data_i, int L, int R){// [L, R]
if (L == R) data[data_i] = read_g();
else{// [L, mid] (mid, R]
int mid = (L + R) >> ;
L = build(data_i << | , L, mid);
R = build(data_i + << , ++mid, R);
if (L == R) data[data_i] = L;
else data[data_i] = -;
}
return data[data_i];
}
int bitwise_peration(int data_i, int L_now, int R_now){
if (~data[data_i] && L <= L_now && R_now <= R){
if (*ts == 'A') data[data_i] &= opn;
else if (*ts == 'O') data[data_i] |= opn;
else if (*ts == 'X') data[data_i] ^= opn;
}
else{
if (~data[data_i]) data[data_i << | ] = data[data_i + << ] = data[data_i];
int mid = (R_now + L_now) >> ;
if (R <= mid){// goto Right
L_now = bitwise_peration(data_i << | , L_now, mid);
R_now = data[data_i + << ];
}
else if (mid < L){// goto Left
L_now = data[data_i << | ];
R_now = bitwise_peration(data_i + << , mid + , R_now);
}
else{
L_now = bitwise_peration(data_i << | , L_now, mid);
R_now = bitwise_peration(data_i + << , mid + , R_now);
}
if (L_now == R_now) data[data_i] = L_now;
else data[data_i] = -;
}
return data[data_i];
}
int sum(int data_i, int L_now, int R_now){
if (~data[data_i]){
if (L_now < L) L_now = L;
if (R < R_now) R_now = R;
return data[data_i] * (++R_now - L_now);
}
int mid = (R_now + L_now) >> ;
if (R <= mid) return sum(data_i << | , L_now, mid);
if (mid < L) return sum(++data_i << , ++mid, R_now);
return sum(data_i << | , L_now, mid) + sum(data_i + << , mid + , R_now);
}
int main(){
int m, n;
short t = read_g();
while (t--){
n = read_g(); m = read_g(); --n;
build(, , n);
while (m--){
scanf("%s", ts); getchar();
if (*ts == 'S'){
L = read_g(); R = read_g();
printf("%d\n", sum(, , n));
}
else{
opn = read_g(); L = read_g(); R = read_g();
bitwise_peration(, , n);
}
}
}
return ;
}
FZU 2105
FZU 2105 Digits Count(位数计算)的更多相关文章
- ACM: FZU 2105 Digits Count - 位运算的线段树【黑科技福利】
FZU 2105 Digits Count Time Limit:10000MS Memory Limit:262144KB 64bit IO Format:%I64d & ...
- FZU 2105 Digits Count(线段树)
Problem 2105 Digits Count Accept: 302 Submit: 1477 Time Limit: 10000 mSec Memory Limit : 262144 KB P ...
- FZU 2105 Digits Count
Problem 2105 Digits Count Accept: 444 Submit: 2139 Time Limit: 10000 mSec Memory Limit : 2621 ...
- fzu 2105 Digits Count ( 线段树 ) from 第三届福建省大学生程序设计竞赛
http://acm.fzu.edu.cn/problem.php?pid=2105 Problem Description Given N integers A={A[0],A[1],...,A[N ...
- FZU 2105 Digits Count(按位维护线段树)
[题目链接] http://acm.fzu.edu.cn/problem.php?pid=2105 [题目大意] 给出一个序列,数字均小于16,为正数,每次区间操作可以使得 1. [l,r]区间and ...
- FZU Problem 2105 Digits Count
Problem Description Given N integers A={A[0],A[1],...,A[N-1]}. Here we have some operations: Operati ...
- FOJ 2105 Digits Count
题意:对一串数字进行抑或某数,和某数,或某数,统计某区间和的操作. 思路:因为化成二进制就4位可以建4颗线段树,每颗代表一位二进制. and 如果该为是1 直接无视,是0则成段赋值为0: or 如 ...
- FZU 2105 (线段树)
Problem 2105 Digits Count Problem Description Given N integers A={A[0],A[1],...,A[N-1]}. Here we h ...
- FZU-2105 Digits Count (两种标记成段更新)
题目大意:给n个0~15之间的数,有3种更新操作,1种询问操作.3种更新操作是:1.让某个闭区间的所有数字与一个0~15之间的数字进行逻辑与运算:2.让某个闭区间的所有数字与一个0~15之间的数字进行 ...
随机推荐
- php CodeIgniter处理多环境错误级别配置
php CodeIgniter处理多环境错误级别配置 开发者常常希望当系统运行在开发环境或生产环境中时能有不同的行为, 例如,在开发环境如果程序能输出详细的错误信息将非常有用,但是在 生产环境这将造成 ...
- 对比其它软件方法评估敏捷和Scrum
一般来说,选择一种软件开发方法,更像是加入一个邪教组织,而不像是做出了一个技术决策.许多公司甚至从未试图去评估这些方法,而仅仅是盲目采用最流行的方法,这就造成了如今五花八门的各种敏捷方法.因此本文将使 ...
- SQL Server 数据库中关于死锁的分析
SQL Server数据库发生死锁时不会像Oracle那样自动生成一个跟踪文件.有时可以在[管理]->[当前活动] 里看到阻塞信息(有时SQL Server企业管理器会因为锁太多而没有响应). ...
- semantic-ui and IE only message
<![if !IE]> <div class="ui message red"> <i class="close icon"> ...
- 未知的系统错误(The transaction is no longer active - status: 'Committed'. No further JDBC access is allowed within this transaction.)
被调用接口处理并发能力太脆弱导致的问题. 重新请求下即可.
- Oracle错误:ORA-01033
Oracle错误:ORA-01033 错误编码:ORA-01033: ORACLE initialization or shutdown in progress 故障描述:因为移动了数据库文件([NA ...
- 织梦系统中出现DedeTag Engine Create File False提示原因及解决方法
今天更新网站时dedecms系统时,遇到一个问题:DedeTag Engine Create File False 出现这样的提示. 其实这也不算是什么错误,我个人觉得最重要的一点就是根目录下没有给 ...
- String 类的常用字符串方法
public class Page106 { /** * 字符串练习第五章 * @param args */ public static void main(String[] args) { Stri ...
- YTU 3002: 出栈顺序(栈和队列)
3002: 出栈顺序(栈和队列) 时间限制: 1 Sec 内存限制: 128 MB 提交: 80 解决: 20 题目描述 给出一个入栈序列,和一个出栈序列,判断该出栈序列是否正确. 输入 输入包含 ...
- 鼠标放上去,div高度随文字增加,并显示剩余的文字。
/*这里是鼠标放上去显示全名 */ .kb2wText{display:block; height:20px; width:150px; line-height:20px; color:#0 ...