题意:给你n个模块,每个模块在A核花费为ai,在B核跑花费为bi,然后由m个任务(ai,bi,wi),表示如果ai,bi不在同一个核上跑,额外的花费为wi,求最小的花费。

一开始想的时候以为是费用流,但想着想着觉得,这么大的数据量绝对不可能是费用流。最后发现它是一个最小割模型。实际上就是要将网络里的模块划分成s-t两个点集,然后我们合适的构造一下边就可以使得对应的最小割就是我们的答案,构造的方法是这样的:当模块属于A集的时候,花费为ai,所以就从向t连一条ai的边,而当模块属于B集的时候,花费为bi,所以就由s连一条向bi的边。然后对于每个任务,当ai,bi不同的时候花费为mi,所以就由ai,bi连两条容量为wi的边,跑一下最大流就可以得出对应的最小花费了。代码将《挑战》上的模板化了一下,以后用起来会方便点吧~

#pragma warning(disable:4996)
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<cstdio>
#include<vector>
#include<cmath>
#include<queue>
#define ll long long
#define maxn 23500
#define maxe 1000000
#define inf 1100000000
using namespace std; struct Edge
{
int u, v, cap;
int nxt;
}edge[maxe]; int head[maxn];
int n, m; struct Dicnic
{
int level[maxn];
int iter[maxn];
int add;
void init(){
add = 0; memset(head, -1, sizeof(head));
memset(iter, -1, sizeof(iter));
}
void insert(int u, int v, int c){
edge[add].u = u; edge[add].v = v; edge[add].cap = c;
edge[add].nxt = head[u]; head[u] = add++;
edge[add].u = v; edge[add].v = u; edge[add].cap = 0;
edge[add].nxt = head[v]; head[v] = add++;
}
void bfs(int s){
memset(level, -1, sizeof(level));
queue<int> que;
level[s] = 0;
que.push(s);
while (!que.empty()){
int v = que.front(); que.pop();
for (int i = head[v]; i != -1; i = edge[i].nxt){
Edge &e = edge[i];
if (e.cap > 0 && level[e.v] < 0){
level[e.v] = level[v] + 1;
que.push(e.v);
}
}
}
} int dfs(int v, int t, int f){
if (v == t) return f;
for (int &i = iter[v]; i != -1; i = edge[i].nxt){
Edge &e = edge[i]; Edge &reve = edge[i ^ 1];
if (e.cap > 0 && level[v] < level[e.v]){
int d = dfs(e.v, t, min(f, e.cap));
if (d>0){
e.cap -= d; reve.cap += d;
return d;
}
}
}
return 0;
} int max_flow(int s, int t){
int flow = 0;
for (;;){
bfs(s);
if (level[t] < 0) return flow;
memcpy(iter, head, sizeof(iter));
int f;
while ((f = dfs(s, t, inf))>0){
flow += f;
}
}
}
}net; int a[maxn], b[maxn]; int main()
{
while (cin >> n >> m){
net.init();
int s = 0, t = n + 1;
for (int i = 1; i <= n; i++) {
scanf("%d", a + i); scanf("%d", b + i);
net.insert(i, t, a[i]);
net.insert(s, i, b[i]);
}
int ui, vi, wi;
for (int i = 0; i < m; i++){
scanf("%d%d%d", &ui, &vi, &wi);
net.insert(ui, vi, wi);
net.insert(vi, ui, wi);
}
printf("%d\n", net.max_flow(s,t));
}
return 0;
}

POJ3469 Dual Core CPU(最小割)的更多相关文章

  1. poj3469 Dual Core CPU——最小割

    题目:http://poj.org/problem?id=3469 最小割水题(竟然没能1A): 代码如下: #include<iostream> #include<cstdio&g ...

  2. POJ 3469 Dual Core CPU (最小割建模)

    题意 现在有n个任务,两个机器A和B,每个任务要么在A上完成,要么在B上完成,而且知道每个任务在A和B机器上完成所需要的费用.然后再给m行,每行 a,b,w三个数字.表示如果a任务和b任务不在同一个机 ...

  3. 【网络流#8】POJ 3469 Dual Core CPU 最小割【ISAP模板】 - 《挑战程序设计竞赛》例题

    [题意]有n个程序,分别在两个内核中运行,程序i在内核A上运行代价为ai,在内核B上运行的代价为bi,现在有程序间数据交换,如果两个程序在同一核上运行,则不产生额外代价,在不同核上运行则产生Cij的额 ...

  4. poj 3469 Dual Core CPU——最小割

    题目:http://poj.org/problem?id=3469 最小割裸题. 那个限制就是在 i.j 之间连双向边. 根据本题能引出网络流中二元关系的种种. 别忘了写 if ( x==n+1 ) ...

  5. poj 3469 Dual Core CPU 最小割

    题目链接 好裸的题....... 两个cpu分别作为源点和汇点, 每个cpu向元件连边, 权值为题目所给的两个值, 如果两个元件之间有关系, 就在这两个元件之间连边, 权值为消耗,这里的边应该是双向边 ...

  6. poj3469 Dual Core CPU

    Dual Core CPU Time Limit: 15000MS   Memory Limit: 131072K Total Submissions: 25576   Accepted: 11033 ...

  7. POJ3469 Dual Core CPU(最小割)

    形象生动的最小割.. #include<cstdio> #include<cstring> #include<queue> #include<algorith ...

  8. 【做题】POJ3469 Dual Core CPU——第一道网络流

    刚学了Dinic就开始做题,然后就崩了. 题意:若干个任务,可以放在两个CPU中任意一个上完成,各有一定代价.其中又有若干对任务,如果它们不在同一个CPU上完成,会产生额外代价.最小化并输出代价. 一 ...

  9. poj 3469 Dual Core CPU【求最小割容量】

    Dual Core CPU Time Limit: 15000MS   Memory Limit: 131072K Total Submissions: 21453   Accepted: 9297 ...

随机推荐

  1. [笔记]--Ubuntu安装Sublime Text 2

    sublime text 2 有两种安装方式,一种是添加软件源,然后用命令安装.另外一种是下载安装包.解压手动安装.Sublime Text 2 入门及技巧 一.下载安装 1.在Sublime Tex ...

  2. 我的WPF控件库——KAN.WPF.XCtrl(141105)

    自己开发的WPF控件库,只是初版,有扩展的Button,TextBox,Window.详细参见前几篇博文. WPF自定义控件(一)——Button:http://www.cnblogs.com/Qin ...

  3. C基础 数据序列化简单使用和讨论

     前言 C中对序列化讨论少, 因为很多传输的内容都有自己解析的轮子. 对于序列化本质是统一编码, 统一解码的方式. 本文探讨是一种简单的序列化方案. 保证不同使用端都能解析出正确结果. 在文章一开始, ...

  4. DB2查看用户表与指定用户表表结构

    1.在dos中查看用户表 1.1查看表 DB2 LIST TABLES FOR USER 1.2 查看表结构 DB2 describe table A 2.在DB2连接工具中(这里以SQLdbx为例子 ...

  5. [iOS]MVVM-框架介绍

       我于 2011 年在 500px 找到自己的第一份 iOS 开发工作.虽然我已经在大学里做了好几年 iOS 外包开发,但这才是我的一个真正的 iOS 开发工作.我被作为唯一的 iOS 开发者被招 ...

  6. UIImageView swift

    // // ViewController.swift // UILabelTest // // Created by mac on 15/6/23. // Copyright (c) 2015年 fa ...

  7. java提供了native2ascii工具

    可以使用这个工具,把中文编码称为ascii码 在命令行输入native2ascii 输入中文 得到数据

  8. vim替换及多行注释命令

    1.多行注释: . 进入命令行模式,按ctrl + v进入 visual block模式,然后按j, 或者k选中多行,把需要注释的行标记起来 . 按大写字母I,再插入注释符,例如// . 按esc键就 ...

  9. Log4J配置文件说明

    Log4J的配置文件(Configuration File)就是用来设置记录器的级别.存放器和布局的,它可接key=value格式的设置或xml格式的设置信息.通过配置,可以创建出Log4J的运行环境 ...

  10. Liferay IDE 3.1 M1发布啦

    很嗨森,以后就再也不用SDK和下载.ivy啦 新增功能主要有: 1.Liferay Workspace(用来存放Liferay Module项目) 2. Liferay Gradle Module P ...