POJ 2992 Divisors (求因子个数)
题意:给n和k,求组合C(n,k)的因子个数。
这道题,若一开始先预处理出C[i][j]的大小,再按普通方法枚举2~sqrt(C[i][j])来求解对应的因子个数,会TLE。
所以得用别的方法。
在说方法前,先说一个n!的性质:
n!的素因子分解中的素数p的个数为
n/p+n/(p^2)+...+n/(p^k)+...
《ACM-ICPC程序设计系列 数论及应用》上的方法,200+ms:
首先先求解435以内的素因子。
然后预处理出j!中每个素因子的个数,公式如下:
num[j][i]=j/prime[i]+num[j/prime[i]][i];
设n!中素因子p的个数为:a=n/p+n/(p^2)+...+n/(p^k)+...
那么(n/p)!中素因子p的个数为:b=n/(p^2)+...+n/(p^k)+...
很显然a=b+n/p,因此可以利用上述递推公式预处理出所有的j!中每个素因子的个数。
接下来就可以预处理出C(i,j)的因子个数,然后一切就好办了。
#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h>
#include <math.h> using namespace std;
const int maxn=;
bool isprime[maxn];
int prime[maxn];
int cnt=;
int num[maxn][maxn]; //num[i][j]表示i!中素因子prime[j]的个数。
long long C[maxn][maxn]; //C[i][j](0<=j<=i)表示组合C(i,j)的因子个数。
void init(){
memset(isprime,true,sizeof(isprime));
for(int i=;i<maxn;i++){
if(isprime[i]){
prime[cnt++]=i;
for(int j=i*;j<maxn;j+=i)
isprime[j]=false;
}
}
memset(num,,sizeof(num));
for(int i=;i<cnt;i++){
for(int j=;j<maxn;j++)
num[j][i]=j/prime[i]+num[j/prime[i]][i];
}
//预处理出C(i,j)的因子个数
for(int i=;i<maxn;i++){
for(int j=;j<i;j++){
C[i][j]=;
for(int k=;k<cnt;k++){
int d=num[i][k]-num[i-j][k]-num[j][k];
if(d)
C[i][j]*=d+;
}
}
}
}
int main()
{
init();
int n,k;
while(scanf("%d%d",&n,&k)!=EOF){
if(n==k ||k==)
printf("1\n");
else
printf("%I64d\n",C[n][k]);
}
return ;
}
我的方法没有预处理,每次读取n和k后,利用公式计算n!,k!,(n-k)!的各个因素的个数,最后再总的求。时间600多ms。
#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h>
#include <math.h> using namespace std;
const int maxn=;
bool isprime[maxn];
int prime[maxn];
int cnt=;
int num[maxn];
void init(){
memset(isprime,true,sizeof(isprime));
for(int i=;i<maxn;i++){
if(isprime[i]){
prime[cnt++]=i;
for(int j=i*;j<maxn;j+=i)
isprime[j]=false;
}
}
}
//求n!的各个素因子的个数
void countnum1(int n){
for(int i=;i<cnt && prime[i]<=n;i++){
int c=,p=prime[i];
while(n/p){
c+=n/p;
p*=prime[i];
}
num[prime[i]]+=c; //在分子上,是+=c。 }
}
void countnum2(int n){
for(int i=;i<cnt && prime[i]<=n;i++){
int c=,p=prime[i];
while(n/p){
c+=n/p;
p*=prime[i];
}
num[prime[i]]-=c; //分母,是-=c
}
}
int main()
{
init();
int n,k;
while(scanf("%d%d",&n,&k)!=EOF){
memset(num,,sizeof(num));
countnum1(n);
countnum2(n-k);
countnum2(k);
long long ret=;
for(int i=;i<cnt;i++){
if(num[prime[i]]){
ret*=(num[prime[i]]+);
}
}
printf("%I64d\n",ret);
}
return ;
}
POJ 2992 Divisors (求因子个数)的更多相关文章
- Trailing Zeroes (I) LightOJ - 1028(求因子个数)
题意: 给出一个N 求N有多少个别的进制的数有后导零 解析: 对于一个别的进制的数要转化为10进制 (我们暂且只分析二进制就好啦) An * 2^(n-1) + An-1 * 2^(n-2) + `` ...
- Almost All Divisors(求因子个数及思维)
---恢复内容开始--- We guessed some integer number xx. You are given a list of almost all its divisors. Alm ...
- LightOj1028 - Trailing Zeroes (I)---求因子个数
题目链接:http://lightoj.com/volume_showproblem.php?problem=1028 题意:给你一个数 n (1<=n<=10^12), 然后我们可以把它 ...
- Easy Number Challenge(暴力,求因子个数)
Easy Number Challenge Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I ...
- poj 2992 Divisors (素数打表+阶乘因子求解)
Divisors Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9617 Accepted: 2821 Descript ...
- poj 2992 Divisors 整数分解
设m=C(n,k)=n!/((n-k)!*k!) 问题:求m的因数的个数 将m分解质因数得到 p1有a1个 p2有a2个 .... 因为每一个质因数能够取0~ai个(所有取0就是1,所有取ai就是m) ...
- POJ 2992 Divisors
每个数都可以分解成素数的乘积: 写成指数形式:n=p1^e1*p2^e2*...*pn^en:(p都是素数) 那么n的因数的数量m=(e1+1)*(e2+1)*...*(en+1): 所以用筛选法筛出 ...
- HDU-1492-The number of divisors(约数) about Humble Numbers -求因子总数+唯一分解定理的变形
A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, ...
- Divisors (求解组合数因子个数)【唯一分解定理】
Divisors 题目链接(点击) Your task in this problem is to determine the number of divisors of Cnk. Just for ...
随机推荐
- 欢迎来到vmax-tam的博客
欢迎来到vmax-tam的博客 我是一个新手程序员 以后会不断学习 把学到的东西记录下来 和大家一起分享的 谢谢大家指教
- JQUERY 判断选择器选择的对象 是否存在
判断方法: 直接选择判断,是不正确的方法,因为 $(“#id”) 不管对象是否存在都会返回 object . if($("#id")){ alert('存在'); }else{ a ...
- [转]Linux Ubuntu上架设FTP
Linux Ubuntu上架设FTP http://www.blogjava.net/stonestyle/articles/369104.html 操作系统:ubuntu (GNU/Linux) 为 ...
- Linux C 文件与目录3 文件读写
文件读写 文件读写是指从文件中读出信息或将信息写入到文件中.Linux文件读取可使用read函数来实现的,文件写入可使用write函数来实现.在进行文件写入的操作时,只是在文件的缓冲区中操作,可能没有 ...
- P1230: [Usaco2008 Nov]lites 开关灯
嗯嗯,这是一道线段树的题,询问区间内亮着的灯的个数,我们可以把区间修改的线段树改一下,原本的求和改成若有奇数次更改则取反(总长度-亮着的灯个数),而判断是否奇数次只要数组加一个delta的值,upda ...
- 软件工程实践小队Scrum Meeting
例会记录 时间:2013年10月20日星期日 Part 1 会议要点: 1. 小组讨论PM.Dev.Test的各自特点: 2. 小组讨论我们的项目网上教学问答系统的相关问题: 3.确定小组成员在第一轮 ...
- C# 串口通信总结
在C#串口通信开发过程中有的产家只提供通信协议,这时候开发人员要自己根据协议来封装方法,有的产家比较人性化提供了封装好的通信协议方法供开发人员调用. 1.只提供通信协议(例如,今年早些时候开发的出钞机 ...
- udp 视频包网络传输花屏
视频数据传输在传输层可以选择TCP或者UDP,TCP面向连接,传输中断,发送端是知道的.TCP传输的好处是不丢包,坏处是网络不太好的情况下会越堵越严重.UDP非面向连接,发送端只管发送数据,接收端有没 ...
- python 交换变量值
在其他语言中,交换两个变量值的时候,可以这样写: temp = a a = b b = temp 在Python中,我们可以简单的这样写: a,b=b,a 实验如下: >>> a=1 ...
- jquery如何删除一个元素后面的所有元素
$("div>span:first").nextAll().remove()