题意:给n和k,求组合C(n,k)的因子个数。

这道题,若一开始先预处理出C[i][j]的大小,再按普通方法枚举2~sqrt(C[i][j])来求解对应的因子个数,会TLE。
所以得用别的方法。

在说方法前,先说一个n!的性质:
n!的素因子分解中的素数p的个数为
n/p+n/(p^2)+...+n/(p^k)+...

《ACM-ICPC程序设计系列 数论及应用》上的方法,200+ms:
首先先求解435以内的素因子。
然后预处理出j!中每个素因子的个数,公式如下:
num[j][i]=j/prime[i]+num[j/prime[i]][i];

设n!中素因子p的个数为:a=n/p+n/(p^2)+...+n/(p^k)+...
那么(n/p)!中素因子p的个数为:b=n/(p^2)+...+n/(p^k)+...
很显然a=b+n/p,因此可以利用上述递推公式预处理出所有的j!中每个素因子的个数。

接下来就可以预处理出C(i,j)的因子个数,然后一切就好办了。

#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h>
#include <math.h> using namespace std;
const int maxn=;
bool isprime[maxn];
int prime[maxn];
int cnt=;
int num[maxn][maxn]; //num[i][j]表示i!中素因子prime[j]的个数。
long long C[maxn][maxn]; //C[i][j](0<=j<=i)表示组合C(i,j)的因子个数。
void init(){
memset(isprime,true,sizeof(isprime));
for(int i=;i<maxn;i++){
if(isprime[i]){
prime[cnt++]=i;
for(int j=i*;j<maxn;j+=i)
isprime[j]=false;
}
}
memset(num,,sizeof(num));
for(int i=;i<cnt;i++){
for(int j=;j<maxn;j++)
num[j][i]=j/prime[i]+num[j/prime[i]][i];
}
//预处理出C(i,j)的因子个数
for(int i=;i<maxn;i++){
for(int j=;j<i;j++){
C[i][j]=;
for(int k=;k<cnt;k++){
int d=num[i][k]-num[i-j][k]-num[j][k];
if(d)
C[i][j]*=d+;
}
}
}
}
int main()
{
init();
int n,k;
while(scanf("%d%d",&n,&k)!=EOF){
if(n==k ||k==)
printf("1\n");
else
printf("%I64d\n",C[n][k]);
}
return ;
}

我的方法没有预处理,每次读取n和k后,利用公式计算n!,k!,(n-k)!的各个因素的个数,最后再总的求。时间600多ms。

#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h>
#include <math.h> using namespace std;
const int maxn=;
bool isprime[maxn];
int prime[maxn];
int cnt=;
int num[maxn];
void init(){
memset(isprime,true,sizeof(isprime));
for(int i=;i<maxn;i++){
if(isprime[i]){
prime[cnt++]=i;
for(int j=i*;j<maxn;j+=i)
isprime[j]=false;
}
}
}
//求n!的各个素因子的个数
void countnum1(int n){
for(int i=;i<cnt && prime[i]<=n;i++){
int c=,p=prime[i];
while(n/p){
c+=n/p;
p*=prime[i];
}
num[prime[i]]+=c; //在分子上,是+=c。 }
}
void countnum2(int n){
for(int i=;i<cnt && prime[i]<=n;i++){
int c=,p=prime[i];
while(n/p){
c+=n/p;
p*=prime[i];
}
num[prime[i]]-=c; //分母,是-=c
}
}
int main()
{
init();
int n,k;
while(scanf("%d%d",&n,&k)!=EOF){
memset(num,,sizeof(num));
countnum1(n);
countnum2(n-k);
countnum2(k);
long long ret=;
for(int i=;i<cnt;i++){
if(num[prime[i]]){
ret*=(num[prime[i]]+);
}
}
printf("%I64d\n",ret);
}
return ;
}

POJ 2992 Divisors (求因子个数)的更多相关文章

  1. Trailing Zeroes (I) LightOJ - 1028(求因子个数)

    题意: 给出一个N 求N有多少个别的进制的数有后导零 解析: 对于一个别的进制的数要转化为10进制 (我们暂且只分析二进制就好啦) An * 2^(n-1) + An-1 * 2^(n-2) + `` ...

  2. Almost All Divisors(求因子个数及思维)

    ---恢复内容开始--- We guessed some integer number xx. You are given a list of almost all its divisors. Alm ...

  3. LightOj1028 - Trailing Zeroes (I)---求因子个数

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1028 题意:给你一个数 n (1<=n<=10^12), 然后我们可以把它 ...

  4. Easy Number Challenge(暴力,求因子个数)

    Easy Number Challenge Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I ...

  5. poj 2992 Divisors (素数打表+阶乘因子求解)

    Divisors Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9617   Accepted: 2821 Descript ...

  6. poj 2992 Divisors 整数分解

    设m=C(n,k)=n!/((n-k)!*k!) 问题:求m的因数的个数 将m分解质因数得到 p1有a1个 p2有a2个 .... 因为每一个质因数能够取0~ai个(所有取0就是1,所有取ai就是m) ...

  7. POJ 2992 Divisors

    每个数都可以分解成素数的乘积: 写成指数形式:n=p1^e1*p2^e2*...*pn^en:(p都是素数) 那么n的因数的数量m=(e1+1)*(e2+1)*...*(en+1): 所以用筛选法筛出 ...

  8. HDU-1492-The number of divisors(约数) about Humble Numbers -求因子总数+唯一分解定理的变形

    A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, ...

  9. Divisors (求解组合数因子个数)【唯一分解定理】

    Divisors 题目链接(点击) Your task in this problem is to determine the number of divisors of Cnk. Just for ...

随机推荐

  1. 欢迎来到vmax-tam的博客

    欢迎来到vmax-tam的博客 我是一个新手程序员 以后会不断学习 把学到的东西记录下来 和大家一起分享的 谢谢大家指教

  2. JQUERY 判断选择器选择的对象 是否存在

    判断方法: 直接选择判断,是不正确的方法,因为 $(“#id”) 不管对象是否存在都会返回 object . if($("#id")){ alert('存在'); }else{ a ...

  3. [转]Linux Ubuntu上架设FTP

    Linux Ubuntu上架设FTP http://www.blogjava.net/stonestyle/articles/369104.html 操作系统:ubuntu (GNU/Linux) 为 ...

  4. Linux C 文件与目录3 文件读写

    文件读写 文件读写是指从文件中读出信息或将信息写入到文件中.Linux文件读取可使用read函数来实现的,文件写入可使用write函数来实现.在进行文件写入的操作时,只是在文件的缓冲区中操作,可能没有 ...

  5. P1230: [Usaco2008 Nov]lites 开关灯

    嗯嗯,这是一道线段树的题,询问区间内亮着的灯的个数,我们可以把区间修改的线段树改一下,原本的求和改成若有奇数次更改则取反(总长度-亮着的灯个数),而判断是否奇数次只要数组加一个delta的值,upda ...

  6. 软件工程实践小队Scrum Meeting

    例会记录 时间:2013年10月20日星期日 Part 1 会议要点: 1. 小组讨论PM.Dev.Test的各自特点: 2. 小组讨论我们的项目网上教学问答系统的相关问题: 3.确定小组成员在第一轮 ...

  7. C# 串口通信总结

    在C#串口通信开发过程中有的产家只提供通信协议,这时候开发人员要自己根据协议来封装方法,有的产家比较人性化提供了封装好的通信协议方法供开发人员调用. 1.只提供通信协议(例如,今年早些时候开发的出钞机 ...

  8. udp 视频包网络传输花屏

    视频数据传输在传输层可以选择TCP或者UDP,TCP面向连接,传输中断,发送端是知道的.TCP传输的好处是不丢包,坏处是网络不太好的情况下会越堵越严重.UDP非面向连接,发送端只管发送数据,接收端有没 ...

  9. python 交换变量值

    在其他语言中,交换两个变量值的时候,可以这样写: temp = a a = b b = temp 在Python中,我们可以简单的这样写: a,b=b,a 实验如下: >>> a=1 ...

  10. jquery如何删除一个元素后面的所有元素

    $("div>span:first").nextAll().remove()