python 序列化之JSON和pickle详解
JSON模块
JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式。它基于ECMAScript的一个子集。 JSON采用完全独立于语言的文本格式,但是也使用了类似于C语言家族的习惯(包括C、C++、Java、JavaScript、Perl、Python等)。这些特性使JSON成为理想的数据交换语言。易于人阅读和编写,同时也易于机器解析和生成(一般用于提升网络传输速率)。
JSON在python中分别由list和dict组成。
一、python类型数据和JSON数据格式互相转换
pthon 中str类型到JSON中转为unicode类型,None转为null,dict对应object
二、数据encoding和decoding
1、简单类型数据编解码
所谓简单类型就是指上表中出现的python类型。
dumps: 将对象序列化
#coding:utf-8
import json # 简单编码===========================================
print json.dumps(['foo', {'bar': ('baz', None, 1.0, 2)}])
# ["foo", {"bar": ["baz", null, 1.0, 2]}] #字典排序
print json.dumps({"c": 0, "b": 0, "a": 0}, sort_keys=True)
# {"a": 0, "b": 0, "c": 0} #自定义分隔符
print json.dumps([1,2,3,{'': 5, '': 7}], sort_keys=True, separators=(',',':'))
# [1,2,3,{"4":5,"6":7}]
print json.dumps([1,2,3,{'': 5, '': 7}], sort_keys=True, separators=('/','-'))
# [1/2/3/{"4"-5/"6"-7}] #增加缩进,增强可读性,但缩进空格会使数据变大
print json.dumps({'': 5, '': 7}, sort_keys=True,indent=2, separators=(',', ': '))
# {
# "4": 5,
# "6": 7
# }
# 另一个比较有用的dumps参数是skipkeys,默认为False。
# dumps方法存储dict对象时,key必须是str类型,如果出现了其他类型的话,那么会产生TypeError异常,如果开启该参数,设为True的话,会忽略这个key。
data = {'a':1,(1,2):123}
print json.dumps(data,skipkeys=True)
#{"a": 1}
dump: 将对象序列化并保存到文件
#将对象序列化并保存到文件
obj = ['foo', {'bar': ('baz', None, 1.0, 2)}]
with open(r"c:\json.txt","w+") as f:
json.dump(obj,f)
loads: 将序列化字符串反序列化
import json obj = ['foo', {'bar': ('baz', None, 1.0, 2)}]
a= json.dumps(obj)
print json.loads(a)
# [u'foo', {u'bar': [u'baz', None, 1.0, 2]}]
load: 将序列化字符串从文件读取并反序列化
with open(r"c:\json.txt","r") as f:
print json.load(f)
三、自定义复杂数据类型编解码
例如我们碰到对象datetime,或者自定义的类对象等json默认不支持的数据类型时,我们就需要自定义编解码函数。有两种方法来实现自定义编解码。
1、方法一:自定义编解码函数
#! /usr/bin/env python
# -*- coding:utf-8 -*-
# __author__ = "TKQ"
import datetime,json dt = datetime.datetime.now() def time2str(obj):
#python to json
if isinstance(obj, datetime.datetime):
json_str = {"datetime":obj.strftime("%Y-%m-%d %X")}
return json_str
return obj def str2time(json_obj):
#json to python
if "datetime" in json_obj:
date_str,time_str = json_obj["datetime"].split(' ')
date = [int(x) for x in date_str.split('-')]
time = [int(x) for x in time_str.split(':')]
dt = datetime.datetime(date[0],date[1], date[2], time[0],time[1], time[2])
return dt
return json_obj a = json.dumps(dt,default=time2str)
print a
# {"datetime": "2016-10-27 17:38:31"}
print json.loads(a,object_hook=str2time)
# 2016-10-27 17:38:31
2、方法二:继承JSONEncoder和JSONDecoder类,重写相关方法
#! /usr/bin/env python
# -*- coding:utf-8 -*-
# __author__ = "TKQ"
import datetime,json dt = datetime.datetime.now()
dd = [dt,[1,2,3]] class MyEncoder(json.JSONEncoder):
def default(self,obj):
#python to json
if isinstance(obj, datetime.datetime):
json_str = {"datetime":obj.strftime("%Y-%m-%d %X")}
return json_str
return obj class MyDecoder(json.JSONDecoder):
def __init__(self):
json.JSONDecoder.__init__(self, object_hook=self.str2time) def str2time(self,json_obj):
#json to python
if "datetime" in json_obj:
date_str,time_str = json_obj["datetime"].split(' ')
date = [int(x) for x in date_str.split('-')]
time = [int(x) for x in time_str.split(':')]
dt = datetime.datetime(date[0],date[1], date[2], time[0],time[1], time[2])
return dt
return json_obj # a = json.dumps(dt,default=time2str)
a =MyEncoder().encode(dd)
print a
# [{"datetime": "2016-10-27 18:14:54"}, [1, 2, 3]]
print MyDecoder().decode(a)
# [datetime.datetime(2016, 10, 27, 18, 14, 54), [1, 2, 3]]
===========================================================
pickle模块
python的pickle模块实现了python的所有数据序列和反序列化。基本上功能使用和JSON模块没有太大区别,方法也同样是dumps/dump和loads/load。cPickle是pickle模块的C语言编译版本相对速度更快。
与JSON不同的是pickle不是用于多种语言间的数据传输,它仅作为python对象的持久化或者python程序间进行互相传输对象的方法,因此它支持了python所有的数据类型。
pickle反序列化后的对象与原对象是等值的副本对象,类似与deepcopy。
dumps/dump序列化
from datetime import date try:
import cPickle as pickle #python 2
except ImportError as e:
import pickle #python 3 src_dic = {"date":date.today(),"oth":([1,"a"],None,True,False),}
det_str = pickle.dumps(src_dic)
print det_str
# (dp1
# S'date'
# p2
# cdatetime
# date
# p3
# (S'\x07\xe0\n\x1b'
# tRp4
# sS'oth'
# p5
# ((lp6
# I1
# aS'a'
# aNI01
# I00
# tp7
# s.
with open(r"c:\pickle.txt","w") as f:
pickle.dump(src_dic,f)
loads/load反序列化
from datetime import date try:
import cPickle as pickle #python 2
except ImportError as e:
import pickle #python 3 src_dic = {"date":date.today(),"oth":([1,"a"],None,True,False),}
det_str = pickle.dumps(src_dic)
with open(r"c:\pickle.txt","r") as f:
print pickle.load(f)
# {'date': datetime.date(2016, 10, 27), 'oth': ([1, 'a'], None, True, False)}
JSON和pickle模块的区别
1、JSON只能处理基本数据类型。pickle能处理所有Python的数据类型。
2、JSON用于各种语言之间的字符转换。pickle用于Python程序对象的持久化或者Python程序间对象网络传输,但不同版本的Python序列化可能还有差异。
python 序列化之JSON和pickle详解的更多相关文章
- Python序列化之json与pickle
1.json介绍 JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式. 易于人阅读和编写.同时也易于机器解析和生成. 它基于JavaScript Progra ...
- python序列化模块json和pickle
序列化相关 1. json 应用场景: json模块主要用于处理json格式的数据,可以将json格式的数据转化为python的字典,便于python处理,同时也可以将python的字典或列表等对象转 ...
- 【转】Python之数据序列化(json、pickle、shelve)
[转]Python之数据序列化(json.pickle.shelve) 本节内容 前言 json模块 pickle模块 shelve模块 总结 一.前言 1. 现实需求 每种编程语言都有各自的数据类型 ...
- Python序列化,json&pickle&shelve模块
1. 序列化说明 序列化可将非字符串的数据类型的数据进行存档,如字典.列表甚至是函数等等 反序列化,将通过序列化保存的文件内容反序列化即可得到数据原本的样子,可直接使用 2. Python中常用的序列 ...
- kafka实战教程(python操作kafka),kafka配置文件详解
kafka实战教程(python操作kafka),kafka配置文件详解 应用往Kafka写数据的原因有很多:用户行为分析.日志存储.异步通信等.多样化的使用场景带来了多样化的需求:消息是否能丢失?是 ...
- python 3.x 爬虫基础---Urllib详解
python 3.x 爬虫基础 python 3.x 爬虫基础---http headers详解 python 3.x 爬虫基础---Urllib详解 前言 爬虫也了解了一段时间了希望在半个月的时间内 ...
- python+requests接口自动化测试框架实例详解
python+requests接口自动化测试框架实例详解 转自https://my.oschina.net/u/3041656/blog/820023 摘要: python + requests实 ...
- python中requests库使用方法详解
目录 python中requests库使用方法详解 官方文档 什么是Requests 安装Requests库 基本的GET请求 带参数的GET请求 解析json 添加headers 基本POST请求 ...
- Python爬虫之selenium库使用详解
Python爬虫之selenium库使用详解 本章内容如下: 什么是Selenium selenium基本使用 声明浏览器对象 访问页面 查找元素 多个元素查找 元素交互操作 交互动作 执行JavaS ...
随机推荐
- 利用UDP19端口实施DOS攻击的真实案例
昨天在一个用户现场发现了一个利用UDP19端口对互联网受害者主机进行DOS攻击的真实案例.这个情况是我第一次见到,个人认为对以后遇到此类情况的兄弟具有参考价值.有必要做一个简单的分析记录. 在此次的分 ...
- 剑指Offer:面试题6——重建二叉树(java实现)
问题描述:输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不包含重复的数字. 例如: 输入:前序{1,2,4,7,3,5,6,8},中序{4,7,2,1 ...
- python学习笔记(递归函数)
博主看了看递归.说的简单点就是程序里面再调用程序本身,或者是方法里面再调研方法本身.或者是函数里面再调研函数本身 用于什么场景呢,博主这里是父子节点排序,父子节点的查询 直接上代码: #!/usr/b ...
- TchApp项目说明
概述 使用Web做UI,csharp编程,构建跨平台桌面软件,项目目标是打造一个框架,做完相关的基础设施,让使用者能够只关注业务开发,而不需要重新构建基础设施. 项目应该包括:窗口管理API,跨语言( ...
- QQ音乐无损歌曲接口api
1.打开QQ音乐官网 y.qq.com 2.选择你要的歌曲,进入后查看网址,以虎口脱险这个歌曲为例:http://y.qq.com/#type=song&mid=000Ib8E71sUNi7 ...
- Android开发-API指南-数据存储
Storage Options 英文原文:http://developer.android.com/guide/topics/data/data-storage.html 采集日期:2015-02-0 ...
- Select的深入应用(2)
首先创建两张表. 全连接 全连接:在检索时指定多个表,将每个表用逗号分隔,这样每个表的数据行都和其他表的每行交叉产生所有可能的组合,这样就是一个全连接.所有可能的组和数即每个表的行数的乘积. 或者: ...
- ASP.NET MVC4 学习系统三(控制器Controller)
控制器(Controllers) 在MVC架构模式的上下文里,控制器响应用户的输入(比如,用户点击“保存”按钮),并协调模型.视图以及(经常)数据访问层.在ASP.NET MVC程序里,控制器就 ...
- C#中messagebox用法
[函数] <整型> MessageBox(<字符串 Text, <字符串> Title, <整型> nType,MessageBoxIcon);[函数说明] ...
- 在VS2012中采用C++中调用DLL中的函数 (4)
这两天因为需要用到VS2012来生成一个DLL代码,但是之前并没有用过DLL相关的内容,从昨天开始尝试调试DLL的文件调用,起初笔者在网络上找到了3片采用VSXXX版本进行调试的例子,相关的内容见本人 ...