https://matt.sh/redis-geo

http://antirez.com/latest/0

http://invece.org/

https://github.com/davidmoten/geo/blob/master/src/main/java/com/github/davidmoten/geo/GeoHash.java

http://www.movable-type.co.uk/scripts/latlong-db.html

http://www.basistech.com/wp-content/uploads/2014/06/oss-2011-smiley-geospatial-search.pdf

https://github.com/mattsta/geohash-int/commits/matt

https://dzone.com/articles/designing-spacial-index#footnote-6-ref

http://www.ibm.com/developerworks/library/j-spatial/

https://en.wikipedia.org/wiki/Angular_diameter

https://en.wikipedia.org/wiki/Angular_displacement

http://gis.stackexchange.com/questions/18330/would-it-be-possible-to-use-geohash-for-proximity-searches/92331

https://github.com/yinqiwen/ardb/blob/d42503/src/geo/geohash_helper.cpp

https://github.com/yinqiwen/ardb/wiki/Spatial-Index

https://github.com/yinqiwen/geohash-int

https://en.wikipedia.org/wiki/Geohash

http://gis.stackexchange.com/questions/115766/fastest-strategy-for-proximity-searches-in-sql-server-2012

https://en.wikipedia.org/wiki/Z-order_curve

https://en.wikipedia.org/wiki/Geohash

https://matt.sh/redis-architecture-diagram

https://matt.sh/redis-geo#_origin-story

https://github.com/antirez/redis/blob/356a6304ec77783e7fdaf00668a09dc293b810a0/src/geo.c

http://cristian.regolo.cc/2015/07/07/introducing-the-geo-api-in-redis.html

http://redisplanet.com/redis/under-the-hood-of-redis-hash-part-2-and-list/

http://redisplanet.com/redis/under-the-hood-of-redis-hash-part-1/

http://www.basistech.com/wp-content/uploads/2014/06/oss-2011-smiley-geospatial-search.pdf

geohash算法原理及实现方式

GeoHash核心原理解析

https://dzone.com/articles/designing-spacial-index

http://iamzhongyong.iteye.com/blog/1399333

http://tech.idv2.com/2011/06/17/location-search/

http://blog.sina.com.cn/s/blog_62ba0fdd0100tul4.html

https://github.com/kungfoo/geohash-java

http://101.96.10.62/geomesa.github.io/assets/outreach/SpatioTemporalIndexing_IEEEcopyright.pdf

https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-shape.html

https://docs.mongodb.com/manual/core/geospatial-indexes/

https://en.wikipedia.org/wiki/Spatial_database#Spatial_index

https://en.wikipedia.org/wiki/Geographic_coordinate_system

https://en.wikipedia.org/wiki/Haversine_formula

http://geohash.org/site/tips.html

https://www.researchgate.net/publication/259633148_Review_of_Spatial_Indexing_Techniques_for_Large_Urban_Data_Management

http://101.96.10.63/www.comp.nus.edu.sg/~ooibc/spatialsurvey.pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.140.7080&rep=rep1&type=pdf

http://101.96.10.61/people.cs.vt.edu/~asandu/Public/Qual2005/Q2005_skjellum.pdf

http://gis.stackexchange.com/questions/115766/fastest-strategy-for-proximity-searches-in-sql-server-2012

http://gis.stackexchange.com/questions/108557/advantages-of-r-trees-in-comparison-to-geohashes?rq=1

http://www.movable-type.co.uk/scripts/latlong.html

https://en.wikipedia.org/wiki/Great-circle_distance

https://en.wikipedia.org/wiki/Haversine_formula

https://en.wikipedia.org/wiki/Angular_displacement

http://www.mathsisfun.com/algebra/trig-inverse-sin-cos-tan.html

http://math.rice.edu/~pcmi/sphere/drg_txt.html

http://stackoverflow.com/questions/18324524/what-are-some-efficient-geohash-bounding-box-coverage-algorithms

https://en.wikipedia.org/wiki/Image_resolution

======================================================================

Absolutely you can. And it can be quite fast. (EDIT: The intensive computation bits can ALSO be distributed)

There are several ways, but one way that I've been working with is in using an ordered list of integer-based geohashes, and finding all the nearest neighbour geohash ranges for a specific geohash resolution (the resolution approximates your distance criteria), and then querying those geohash ranges to get a list of nearby points. I use redis and nodejs (ie. javascript) for this. Redis is super fast and can retrieve ordered ranges very quickly, but it can't do a lot of the indexing query manipulation stuff that SQL databases can do.

The method is outlined here: https://github.com/yinqiwen/ardb/blob/master/doc/spatial-index.md

But the gist of it is (to paraphrase the link):

  1. You store all your geohashed points in the best resolution you want (max usually 64bit integer if that's accessible, or in the case of javascript, 52bits) in an ordered set (ie. zset in redis). Most geohash libraries these days have geohash integer functions built in, and you'll need to use these instead of the more common base32 geohashes.
  2. Based on the radius you want to search within, you need to then find a bit depth/resolution that will match your search area and this must be less than or equal to your stored geohash bit depth. The linked site has a table that correlates the bit depth of a geohash to its bounding box area in meters.
  3. Then you rehash your original coordinate at this lower resolution.
  4. At that lower resolution also find the 8 neighbour (n, ne, e, se, s, sw, w, nw) geohash areas. The reason why you have to do the neighbour method, is because two coordinates nearly right beside each other could have completely different geohashes, so you need to do some averaging of the area covered by the search.
  5. Once you get all the neighbour geohashes at this lower resolution, add to the list your coordinate's geohash from step 3.
  6. Then you need to build a range of geohash values to search within which cover these 9 areas. The values from step 5 are your lower range limit, and if you add 1 to each of them, you'll get your upper range limit. So you should have an array of 9 ranges, each with a lower limit and and upper geohash limit (18 geohashes in total). These geohashes are still in that lower resolution from step 2.
  7. Then you convert all 18 of these geohashes to whatever bit depth/resolution you have stored all your geohashes in your database in. Generally you do this by bitshifting it to the desired bit depth.
  8. Now you can do a range query for points within these 9 ranges and you'll get all points approximately within the distance of your original point. There will be no overlap so you don't need to do any intersections, just pure range queries, very fast. (ie. in redis: ZRANGEBYSCORE zsetname lowerLimit upperLimit, over the 9 ranges produced in this step)

You can further optimize (speed wise) this by:

  1. Taking those 9 ranges from step 6 and finding where they lead into each other. Usually you can reduce 9 separate ranges into about 4 or 5 depending on where your coordinate is. This can reduce your query time by half.
  2. Once you have your final ranges, you should hold them for reuse. The calculation of these ranges can take most of the processing time, so if your original coordinate doesn't change much but you need to make the same distance query over again, you should keep that ready instead of calculating it everytime.
  3. If you're using redis, try to combine the queries into a MULTI/EXEC so it pipelines them for a bit better performance.
  4. The BEST part: You can distribute steps 2-7 on clients instead of having that computation done all in one place. This greatly reduces CPU load in situations where millions of requests would be coming in.

You can further improve accuracy by using a circle distance/haversine type function on the returned results if you care much about precision.

Here's a similar technique using ordinary base32 geohashes and a SQL query instead of redis: https://github.com/davetroy/geohash-js

I don't mean to plug my own thing, but I've written a module for nodejs&redis that makes this really easy to implement. Have a look at the code if you'd like: https://github.com/arjunmehta/node-geo-proximity

Redis GEO ,GEOHASH,Spatial_index的更多相关文章

  1. 洞悉Redis技术内幕:缓存,数据结构,并发,集群与算法

    "为什么这个功能用不了?" 程序员:"清一下缓存" 上篇洞悉系列文章给大家详细介绍了MySQL的存储内幕:洞悉MySQL底层架构:游走在缓冲与磁盘之间.既然聊过 ...

  2. 常见的Redis面试"刁难"问题,值得一读

    Redis有哪些数据结构? 字符串String.字典Hash.列表List.集合Set.有序集合SortedSet. 如果你是Redis中高级用户,还需要加上下面几种数据结构HyperLogLog.G ...

  3. Redis的Python实践,以及四中常用应用场景详解——学习董伟明老师的《Python Web开发实践》

    首先,简单介绍:Redis是一个基于内存的键值对存储系统,常用作数据库.缓存和消息代理. 支持:字符串,字典,列表,集合,有序集合,位图(bitmaps),地理位置,HyperLogLog等多种数据结 ...

  4. 分布式缓存技术redis学习系列(五)——redis实战(redis与spring整合,分布式锁实现)

    本文是redis学习系列的第五篇,点击下面链接可回看系列文章 <redis简介以及linux上的安装> <详细讲解redis数据结构(内存模型)以及常用命令> <redi ...

  5. 项目分布式部署那些事(1):ONS消息队列、基于Redis的Session共享,开源共享

    因业务发展需要现在的系统不足以支撑现在的用户量,于是我们在一周之前着手项目的性能优化与分布式部署的相关动作. 概况 现在的系统是基于RabbitHub(一套开源的开发时框架)和Rabbit.WeiXi ...

  6. redis虚拟机模拟集群,节点,增加多端口命令

    Redis启动多端口,运行多实例 使用redis在同一台机器上,启用多个端口,实现多个实例,完成集群的模拟实现. 启动多实例 redis默认启动端口为6379,我们可以使用 --port 来指定多个端 ...

  7. redis 五种数据结构详解(string,list,set,zset,hash)

    redis 五种数据结构详解(string,list,set,zset,hash) Redis不仅仅支持简单的key-value类型的数据,同时还提供list,set,zset,hash等数据结构的存 ...

  8. python_way ,day11 线程,怎么写一个多线程?,队列,生产者消费者模型,线程锁,缓存(memcache,redis)

    python11 1.多线程原理 2.怎么写一个多线程? 3.队列 4.生产者消费者模型 5.线程锁 6.缓存 memcache redis 多线程原理 def f1(arg) print(arg) ...

  9. Redis入门(优势,环境,字符串,哈希,列表)

    Redis从它的许多竞争继承来的三个主要特点: Redis数据库完全在内存中,使用磁盘仅用于持久性. 相比许多键值数据存储,Redis拥有一套较为丰富的数据类型. Redis可以将数据复制到任意数量的 ...

随机推荐

  1. Tomcat 网站部署(三)

    一.Tomcat的部署方式有以下两种 1.自动部署 2.虚拟目录 二.自动部署 文件必须放在放在webapps就可以了,可以用这样访问 http://localhost:8080/放在webapps目 ...

  2. linux学习笔记4:linux的任务调度,进程管理,mysql的安装和使用,ssh工具的使用,linux网络编程

    1.设置任务调度命令crontab 任务调度是指系统在某个时间执行的特定的命令或程序.任务调度分为:1)系统工作:有些重要的工作必须周而复始的执行,如病毒扫描.2)个别用户工作:个别用户可能希望执行某 ...

  3. HDU 4737 A Bit Fun

    题意:定义F(i,j)为数组a中从ai到aj的或运算,求使F(i,j)<m的对数. 思路:或运算具有单调性,也就是只增不减,如果某个时刻结果大于等于m了,那么再往后一定也大于等于m.所以可以用两 ...

  4. Smart Card Filesystem

  5. How Android Draws Views

    https://developer.android.com/guide/topics/ui/how-android-draws.html

  6. compare:(字符串的大小比较)

    1.字符串的比较是按照ascall码进行比较的 比如A比a的值小, if([string1 compare:string2] == (以下描述)) 如果比较的结果是NSOrderedDescendin ...

  7. Channel Allocation_四色定理

    Description When a radio station is broadcasting over a very large area, repeaters are used to retra ...

  8. Unity3D ShaderLab立方体图的法线渲染

    Unity3D ShaderLab立方体图的法线渲染 某些情况下,我们希望立方体图的材质球上产生法线效果,来更多的表现细节,比如菱形花纹的玻璃,冰块的表面. 在帧数的协调下,我们可以通过input结构 ...

  9. Selenium Waits

    Selenium高级功能包含查找等待, Selenium的查找等待有两种方式, 隐式等待(Implicit Waits)和显示等待(Explicit Waits): 这里写下我对两者的理解, 1. 隐 ...

  10. beta 阶段的 postmortem 报告

    part一: 用户数:目前约30人 总结:与当初的预算差不多,首先1.第一次开发软件,经验效率不足,那是很正常的事情.2.用户数量少,因为宣传力度还是比较的少.应该加强软件的推广才行. part二: ...