最大似然估计(MLE)与最小二乘估计(LSE)的区别
最大似然估计与最小二乘估计的区别
标签(空格分隔): 概率论与数理统计
最小二乘估计
对于最小二乘估计来说,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值与观测值之差的平方和最小。
设Q表示平方误差,\(Y_{i}\)表示估计值,\(\hat{Y}_{i}\)表示观测值,即\(Q = \sum_{i=1}^{n}(Y_{i} - \hat{Y}_{i})^{2}\)
最大似然估计
对于最大似然估计来说,最合理的参数估计量应该使得从模型中抽取该n组样本的观测值的概率最大,也就是概率分布函数或者似然函数最大。
显然,最大似然估计需要已知这个概率分布函数,一般假设其满足正态分布函数的特性,在这种情况下,最大似然估计与最小二乘估计是等价的,也就是估计的结果是相同的。
最大似然估计原理:
- 当给定样本\(x_{1}, x_{2}, ... ,x_{n}\)时,定义似然函数为\(L(\theta) = f(x_{1}, x_{2}, ... ,x_{n};\theta)\);
- \(L(\theta)\)看做是\(\theta\)的函数,最大似然估计就是用使\(L(\theta)\)达到最大值的\(\hat{\theta}\)去估计\(\theta\),这时称\(\hat{\theta}\)为\(\theta\)的最大似然估计;
MLE的步骤:
- 由总体分布导出样本的联合概率函数(或联合密度);
- 把样本联合概率函数的自变量看成是已知常数,而把\(\theta\)看做是自变量,得到似然函数\(L(\theta)\);
- 求似然函数的最大值(常常取对数,然后求驻点);
- 用样本值带入得到参数的最大似然估计。
例题
设一个有偏的硬币,抛了100次,出现1次人头,99次字。问用最大似然估计(ML)和最小均方误差(LSE)估计出现人头的概率哪个大?
LSE
设使用LSE估计,出现人头的概率为\(\theta\), 则出现字的概率为\(1 - \theta\)。
已知观测量为:(观测到的)出现人头的概率为\(\frac{1}{100}\), (观测到的)出现字的概率为\(\frac{99}{100}\),则由最小二乘估计:
\(Q(\theta) = argmin_{\theta}\sum_{1}^{100}(\theta - \hat{\theta})^{2} \\ = argmin_{\theta} \{(\frac{1}{100} - \theta)^{2} + [\frac{99}{100} - (1-\theta)]^{2} * 99\}\)
令\(\frac{\partial{Q(\theta)}}{\partial{\theta}} = 0\),解得\(\theta = \frac{1}{100}\);
ML
设使用ML估计,所以x服从伯努利分布,\(x \sim B(朝上,\theta)\),
则概率密度函数为:
\[P(x|\theta) =
\begin{cases}
\theta, & \text{if x 人头朝上} \\
1 - \theta, & \text{if x 字朝上}
\end{cases}
\]
则连续100次试验的似然函数为:
\(P(x_{1}, x_{2},..x_{100}|\theta) = C_{100}^{1}\theta^{1} * (1 - \theta)^{99} = 100 * \theta^{1} * (1 - \theta)^{99}\)
最大化似然函数,则\(\theta\)至少为驻点,对似然函数取对数并求偏导:
\(\ln P(x_{1}, x_{2},..x_{100}|\theta) = \ln 100 + \ln\theta + 99\ln (1 - \theta)\)
对\(\theta\)求偏导为0,得到:
\(\frac{\partial\ln P(x_{1}, x_{2},..x_{100}|\theta)}{\partial\theta} = \frac{1}{\theta} - \frac{99}{1 - \theta} = 0\), 解得\(\theta = \frac{1}{100}.\)
两者虽然得到的估计值是一样的,但是原理完全不同,要对他们的推导过程非常清楚。
最大似然估计(MLE)与最小二乘估计(LSE)的区别的更多相关文章
- 萌新笔记——Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))
在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...
- 4.机器学习——统计学习三要素与最大似然估计、最大后验概率估计及L1、L2正则化
1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松.忆臻.nebulaf91等人的博客以及李航老师的<统计学习方法>后,豁然开朗,于是在此记下一些心得体会. “最大似然估计” ...
- Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))
在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...
- 机器学习基础系列--先验概率 后验概率 似然函数 最大似然估计(MLE) 最大后验概率(MAE) 以及贝叶斯公式的理解
目录 机器学习基础 1. 概率和统计 2. 先验概率(由历史求因) 3. 后验概率(知果求因) 4. 似然函数(由因求果) 5. 有趣的野史--贝叶斯和似然之争-最大似然概率(MLE)-最大后验概率( ...
- 补充资料——自己实现极大似然估计(最大似然估计)MLE
这篇文章给了我一个启发,我们可以自己用已知分布的密度函数进行组合,然后构建一个新的密度函数啦,然后用极大似然估计MLE进行估计. 代码和结果演示 代码: #取出MASS包这中的数据 data(geys ...
- 详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解
转载声明:本文为转载文章,发表于nebulaf91的csdn博客.欢迎转载,但请务必保留本信息,注明文章出处. 原文作者: nebulaf91 原文原始地址:http://blog.csdn.net/ ...
- 最大似然估计 (MLE)与 最大后验概率(MAP)在机器学习中的应用
最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”. 例如,对于线性回归,我们假定样本是服从正态分布,但是不知道 ...
- 最大似然估计 (MLE) 最大后验概率(MAP)
1) 最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即"模型已定,参数未知". 例如,我们知道这个分布是正态分布 ...
- 【模式识别与机器学习】——最大似然估计 (MLE) 最大后验概率(MAP)和最小二乘法
1) 极/最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”.例如,我们知道这个分布是正态分布,但是不知道均值和 ...
随机推荐
- ubuntu支持shh远程连接记录
打开终端输入sudo apt-get update更新软件库 在输入sudo apt-get install openssh-server下载ssh sudo /etc/init.d/ssh rest ...
- Android NDK 开发(四)java传递数据到C【转】
转载请注明出处:http://blog.csdn.net/allen315410/article/details/41845701 前面几篇文章介绍了Android NDK开发的简单概念.常见错误及处 ...
- 【python cookbook】【数据结构与算法】2 从任意长度的可迭代对象中分解元素
从某个可迭代对象中分解出N个元素,但是可迭代对象的长度可能超过N,会出现“分解值过多”的异常: 使用“*表达式”来解决该问题: Python 3.4.3 (v3.4.3:9b73f1c3e601, F ...
- win32 Ui 编程 收集
---恢复内容开始--- windows sdk编程系列---- 通用控件 http://www.cnblogs.com/MoreNotepad-plus-plus/articles/3164534. ...
- grid
- [转]微软SerialPort秘籍[SerialPort为什么死锁程序的分析]
既然是秘籍,显然是写一些大家不常找到的,MSDN里遗漏提示大家注意的东西. 用过.net 2.0中,自带SerialPort的人,大多都遇到过.莫名其妙的执行Close的时候会死掉的问题.而Wince ...
- Spring和MyBatis环境整合
SSH框架的结合几乎家喻户晓,但是一般的中小项目,使用Spring和MyBatis就够了,而且MyBatis轻便好使,易上手,值得大家尝试一次. 开篇简介: Spring: Spring是一个轻量级的 ...
- GCD 多线程 初探
GCD编程的核心就是dispatch队列,dispatch block的执行最终都会放进某个队列中去进行,它类似NSOperationQueue但更复杂也更强大,并且可以嵌套使用.所以说,结合bloc ...
- C#:实现托盘
1.向窗体上添加如下控件:MenuStrip menuStrip1, NotifyIcon ni_frmMain,Timer timer1, ContentMenuStrip cms_notify.其 ...
- 约瑟夫问题 java
约瑟夫环:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重复下去,直到圆桌周围 ...