最大似然估计(MLE)与最小二乘估计(LSE)的区别
最大似然估计与最小二乘估计的区别
标签(空格分隔): 概率论与数理统计
最小二乘估计
对于最小二乘估计来说,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值与观测值之差的平方和最小。
设Q表示平方误差,\(Y_{i}\)表示估计值,\(\hat{Y}_{i}\)表示观测值,即\(Q = \sum_{i=1}^{n}(Y_{i} - \hat{Y}_{i})^{2}\)
最大似然估计
对于最大似然估计来说,最合理的参数估计量应该使得从模型中抽取该n组样本的观测值的概率最大,也就是概率分布函数或者似然函数最大。
显然,最大似然估计需要已知这个概率分布函数,一般假设其满足正态分布函数的特性,在这种情况下,最大似然估计与最小二乘估计是等价的,也就是估计的结果是相同的。
最大似然估计原理:
- 当给定样本\(x_{1}, x_{2}, ... ,x_{n}\)时,定义似然函数为\(L(\theta) = f(x_{1}, x_{2}, ... ,x_{n};\theta)\);
- \(L(\theta)\)看做是\(\theta\)的函数,最大似然估计就是用使\(L(\theta)\)达到最大值的\(\hat{\theta}\)去估计\(\theta\),这时称\(\hat{\theta}\)为\(\theta\)的最大似然估计;
MLE的步骤:
- 由总体分布导出样本的联合概率函数(或联合密度);
- 把样本联合概率函数的自变量看成是已知常数,而把\(\theta\)看做是自变量,得到似然函数\(L(\theta)\);
- 求似然函数的最大值(常常取对数,然后求驻点);
- 用样本值带入得到参数的最大似然估计。
例题
设一个有偏的硬币,抛了100次,出现1次人头,99次字。问用最大似然估计(ML)和最小均方误差(LSE)估计出现人头的概率哪个大?
LSE
设使用LSE估计,出现人头的概率为\(\theta\), 则出现字的概率为\(1 - \theta\)。
已知观测量为:(观测到的)出现人头的概率为\(\frac{1}{100}\), (观测到的)出现字的概率为\(\frac{99}{100}\),则由最小二乘估计:
\(Q(\theta) = argmin_{\theta}\sum_{1}^{100}(\theta - \hat{\theta})^{2} \\ = argmin_{\theta} \{(\frac{1}{100} - \theta)^{2} + [\frac{99}{100} - (1-\theta)]^{2} * 99\}\)
令\(\frac{\partial{Q(\theta)}}{\partial{\theta}} = 0\),解得\(\theta = \frac{1}{100}\);
ML
设使用ML估计,所以x服从伯努利分布,\(x \sim B(朝上,\theta)\),
则概率密度函数为:
\[P(x|\theta) =
\begin{cases}
\theta, & \text{if x 人头朝上} \\
1 - \theta, & \text{if x 字朝上}
\end{cases}
\]
则连续100次试验的似然函数为:
\(P(x_{1}, x_{2},..x_{100}|\theta) = C_{100}^{1}\theta^{1} * (1 - \theta)^{99} = 100 * \theta^{1} * (1 - \theta)^{99}\)
最大化似然函数,则\(\theta\)至少为驻点,对似然函数取对数并求偏导:
\(\ln P(x_{1}, x_{2},..x_{100}|\theta) = \ln 100 + \ln\theta + 99\ln (1 - \theta)\)
对\(\theta\)求偏导为0,得到:
\(\frac{\partial\ln P(x_{1}, x_{2},..x_{100}|\theta)}{\partial\theta} = \frac{1}{\theta} - \frac{99}{1 - \theta} = 0\), 解得\(\theta = \frac{1}{100}.\)
两者虽然得到的估计值是一样的,但是原理完全不同,要对他们的推导过程非常清楚。
最大似然估计(MLE)与最小二乘估计(LSE)的区别的更多相关文章
- 萌新笔记——Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))
在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...
- 4.机器学习——统计学习三要素与最大似然估计、最大后验概率估计及L1、L2正则化
1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松.忆臻.nebulaf91等人的博客以及李航老师的<统计学习方法>后,豁然开朗,于是在此记下一些心得体会. “最大似然估计” ...
- Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))
在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...
- 机器学习基础系列--先验概率 后验概率 似然函数 最大似然估计(MLE) 最大后验概率(MAE) 以及贝叶斯公式的理解
目录 机器学习基础 1. 概率和统计 2. 先验概率(由历史求因) 3. 后验概率(知果求因) 4. 似然函数(由因求果) 5. 有趣的野史--贝叶斯和似然之争-最大似然概率(MLE)-最大后验概率( ...
- 补充资料——自己实现极大似然估计(最大似然估计)MLE
这篇文章给了我一个启发,我们可以自己用已知分布的密度函数进行组合,然后构建一个新的密度函数啦,然后用极大似然估计MLE进行估计. 代码和结果演示 代码: #取出MASS包这中的数据 data(geys ...
- 详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解
转载声明:本文为转载文章,发表于nebulaf91的csdn博客.欢迎转载,但请务必保留本信息,注明文章出处. 原文作者: nebulaf91 原文原始地址:http://blog.csdn.net/ ...
- 最大似然估计 (MLE)与 最大后验概率(MAP)在机器学习中的应用
最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”. 例如,对于线性回归,我们假定样本是服从正态分布,但是不知道 ...
- 最大似然估计 (MLE) 最大后验概率(MAP)
1) 最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即"模型已定,参数未知". 例如,我们知道这个分布是正态分布 ...
- 【模式识别与机器学习】——最大似然估计 (MLE) 最大后验概率(MAP)和最小二乘法
1) 极/最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”.例如,我们知道这个分布是正态分布,但是不知道均值和 ...
随机推荐
- [待解决] sudo unable to resolve host
怪哉怪哉, 大debian突然就出现了这个问题 , 问题的现象是只要使用 sudo 执行命令就会出现 sudo unable to resolve host </etc/hostname中的内容 ...
- Cloudera CDH 、Impala本地通过Parcel安装配置详解
一.Parcel本地源与Package本地源的区别 本地通过Parcel安装过程与本地通过Package安装过程完全一致,不同的是两者的本地源的配置. 区别如下: Package本地源:软件包是.rp ...
- php+jquery注册实例
写了一个简单的PHP+jQuery注册模块,需要填写的栏目包括用户名.邮箱.密码.重复密码和验证码,其中每个栏目需要具备的功能和要求如下图: 在做这个模块的时候,很大程度上借鉴了网易注册( http: ...
- 【海岛帝国系列赛】No.2 海岛帝国:“落汤鸡”市的黑帮危机
50200210海岛帝国:“落汤鸡”市的黑帮危机 [试题描述] 近几天,犯罪分子发现“药师傅”帝国的警力约等于0.(请见YSF的海岛帝国)于是开始猖狂了起来.他们选择了依山靠水(农村?)的“落汤鸡”市 ...
- SVN使用(一)
SVN简介: 为什么要使用SVN? 程序员在编写程序的过程中,每个程序员都会生成很多不同的版本,这就需要程序员有效的管理代码,在需要的时候可以迅速,准确取出相应的版本. Subversion是什么? ...
- html规范总结
这个链接有规范的html 描述:http://nec.netease.com/standard 相关链接: 1. http://www.zhangxinxu.com/wordpress/2010/09 ...
- semantic-ui and IE only message
<![if !IE]> <div class="ui message red"> <i class="close icon"> ...
- href="#"会导致location.replace(location.href);脚本不工作
我们经常这样:<a onclick="xxx" href="#" 其实这不是一个好习惯,当点下这个连接后,主页面的URL后面会加个#号,这样就会导致很多J ...
- 【jqGrid for ASP.NET MVC Documentation】.学习笔记.3.本地化语言包
1 引用本地化语言包 在 js/i18n 文件夹中,提供了大量预定义的语言包.它包括为所有字符串定义的,包括消息,标题,分页信息,搜索/添加/删除 的对话框 文本等. 在jQuery库文件后,在jqG ...
- 模拟namenode崩溃,使用secondarynamenode恢复
方法一.使用namespaceID 1.在namenode节点上,将dfs.name.dir指定的目录中(这里是name目录)的内容情况,以此来模拟故障发生. [hadoop@node1 name]$ ...