Fibonacci Tree

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Problem Description
 
 Coach Pang is interested in Fibonacci numbers while Uncle Yang wants
him to do some research on Spanning Tree. So Coach Pang decides to solve
the following problem:
  Consider a bidirectional graph G with N
vertices and M edges. All edges are painted into either white or black.
Can we find a Spanning Tree with some positive Fibonacci number of white
edges?
(Fibonacci number is defined as 1, 2, 3, 5, 8, ... )
 
Input
  The first line of the input contains an integer T, the number of test cases.
  For each test case, the first line contains two integers N(1 <= N <= 105) and M(0 <= M <= 105).
 
 Then M lines follow, each contains three integers u, v (1 <= u,v
<= N, u<> v) and c (0 <= c <= 1), indicating an edge
between u and v with a color c (1 for white and 0 for black).
 
Output
 
 For each test case, output a line “Case #x: s”. x is the case number
and s is either “Yes” or “No” (without quotes) representing the answer
to the problem.
 
Sample Input
2
4 4
1 2 1
2 3 1
3 4 1
1 4 0
5 6
1 2 1
1 3 1
1 4 1
1 5 1
3 5 1
4 2 1
 
Sample Output
Case #1: Yes
Case #2: No
 
    生成树的深入理解,也就是说:
  (1)白边的最小条数(L)与最大条数(R)是一个定值 ;
  (2)黑边可以由白边替换。
 
#include <iostream>
#include <string>
#include <string.h>
#include <algorithm>
#include <stdio.h>
using namespace std;
const int Max_N = ;
struct Edge{
int u ;
int v ;
int w ;
} ;
Edge edge[Max_N] ;
int N , M; bool cmp1(Edge A ,Edge B){
return A.w < B.w ;
} bool cmp2(Edge A ,Edge B){
return A.w > B.w ;
} int father[Max_N] ; int find_father(int x){
if(x == father[x])
return x ;
else
return father[x] = find_father(father[x]) ;
} int gao(){
int sum = ,brige = ;
for(int i = ; i <= N ; i++)
father[i] = i ;
for(int i = ; i <= M ; i++){
int f_u = find_father(edge[i].u) ;
int f_v = find_father(edge[i].v) ;
if(f_u != f_v){
brige ++ ;
sum += edge[i].w ;
father[f_u] = f_v ;
}
if(brige == N-)
break ;
}
return brige == N- ? sum : - ;
} int fibo[] ; void init_fibo(){
fibo[] = ;
fibo[] = ;
for(int i = ; i <= ; i++)
fibo[i] = fibo[i-] + fibo[i-] ;
} int judge(){
int L , R ;
sort(edge+ ,edge++M, cmp1) ;
L = gao() ;
sort(edge+ ,edge++M ,cmp2) ;
R = gao() ;
if(L == -)
return ;
for(int i = ;i < ;i++){
if(L <= fibo[i] && fibo[i] <= R)
return ;
}
return ;
} int main(){
init_fibo() ;
int T ;
scanf("%d",&T) ;
for(int cas = ;cas <= T; cas++){
scanf("%d%d",&N,&M) ;
for(int i = ;i <= M ;i++)
scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w) ;
printf("Case #%d: %s\n",cas,judge()? "Yes" : "No") ;
}
return ;
}

HDU 4786 Fibonacci Tree的更多相关文章

  1. hdu 4786 Fibonacci Tree (2013ACMICPC 成都站 F)

    http://acm.hdu.edu.cn/showproblem.php?pid=4786 Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others) ...

  2. HDU 4786 Fibonacci Tree(生成树,YY乱搞)

    http://acm.hdu.edu.cn/showproblem.php? pid=4786 Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others ...

  3. HDU 4786 Fibonacci Tree 最小生成树

    Fibonacci Tree 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=4786 Description Coach Pang is intere ...

  4. HDU 4786 Fibonacci Tree (2013成都1006题)

    Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  5. hdu 4786 Fibonacci Tree(最小生成树)

    Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  6. 【HDU 4786 Fibonacci Tree】最小生成树

    一个由n个顶点m条边(可能有重边)构成的无向图(可能不连通),每条边的权值不是0就是1. 给出n.m和每条边的权值,问是否存在生成树,其边权值和为fibonacci数集合{1,2,3,5,8...}中 ...

  7. HDU 4786 Fibonacci Tree 生成树

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=4786 题意:有N个节点(1 <= N <= 10^5),M条边(0 <= M <= ...

  8. hdu 4786 Fibonacci Tree 乱搞 智商题目 最小生成树

    首先计算图的联通情况,如果图本身不联通一定不会出现生成树,输出"NO",之后清空,加白边,看最多能加多少条,清空,加黑边,看能加多少条,即可得白边的最大值与最小值,之后判断Fibo ...

  9. HDU 4786 Fibonacci Tree (2013成都1006题) 最小生成树+斐波那契

    题意:问生成树里能不能有符合菲波那切数的白边数量 思路:白边 黑边各优先排序求最小生成树,并统计白边在两种情况下数目,最后判断这个区间就可以.注意最初不连通就不行. #include <stdi ...

随机推荐

  1. session_write_close()

    功能: 结束当前的session 操作 保存session 数据  说的很明白了, 当脚本请求没有调用session_write_close(); 时虽然 session  的数据是存储住了.但是 s ...

  2. [内核同步]自旋锁spin_lock、spin_lock_irq 和 spin_lock_irqsave 分析

    转自:http://blog.csdn.net/wh_19910525/article/details/11536279 自旋锁的初衷:在短期间内进行轻量级的锁定.一个被争用的自旋锁使得请求它的线程在 ...

  3. 黄聪:wordpress/wp-includes目录文件

    wp-includes/cache.php wp-includes/capabilities.php wp-includes/class-IXR.php:Incutio XML-RPC库.包括了 XM ...

  4. java.util.concurrent

    软件包 java.util.concurrent 的描述 在并发编程中很常用的实用工具类.此包包括了几个小的.已标准化的可扩展框架,以及一些提供有用功能的类,没有这些类,这些功能会很难实现或实现起来冗 ...

  5. Shell_Shell调用SQLPlus简介(案例)

    2014-06-20  Created By BaoXinjian

  6. hdu 5698 瞬间移动(排列组合)

    这题刚看完,想了想,没思路,就题解了 = = 但不得不说,找到这个题解真的很强大,链接:http://blog.csdn.net/qwb492859377/article/details/514781 ...

  7. 【JavaScript】创建命名空间,Class,LOG

    JxUnderscore(function (J, _, root) { var isWindow, deepObject, Namespace, Class, LOG; /** * 一个对象是否为w ...

  8. JAVA 构造方法之间的调用

    this:看上去,用来区分局部变量和成员变量的情况this:就是代表本类对象,this代表它所在方法所属对象的引用构造方法之间的调用只能通过this语句来完成构造方法之间进行调用时this语句只能出现 ...

  9. JAVA while循环,do-while循环,for循环

    一.while循环 实例: public class Test{ public static void main(String[] args){ int i = 1; while(i<30){ ...

  10. 开发工具及服务年度大奖评选 I Bugtags 荣获最具成长潜力奖

    作为全球最大中文 IT 社区和服务平台.中国最大技术管理者平台的 CSDN 在中国北京总部举办了一场 2015 年开发工具及服务年度大奖评选活动,此次活动目的在于推动开发服务及工具质量的提升,提高行业 ...