• 1.质数:

  质数(prime number)又称素数,有无限个。一个大于1的自然数,除了1和它本身外,不能整除以其他自然数(质数),换句话说就是该数除了1和它本身以外不再有其他的因数。

  • 2.约数:

  如果一个整数能被两个整数整除,那么这个数就是着两个数的约数。约数是有限的,一般用最大公约数。例如 24的约数是1,2,3,4,6,8,12,24

  • 3.计算约数和:

  在数论中有种,把一个数分解成N个素数的积,再把这些素数的指数加一后,全部相乘的积就是约数的个数了。

  例如:36 = 2^2 * 3^2 指数加一的积就是:(2+1)*(2+1) = 9;36有9个约数吧。
  24 = 2^3 * 3 指数加一的积就是:(3+1)*(1+1) = 8;24就有8个约数。

 int check(int n){
int i,sum = ;
memset(arry,,sizeof(arry));
for(i = ;i <=n;i++){
while(n!=i){
if(n%i == ){
arry[i]++;
n/=i;
}
else
break;
}
}
arry[n]++;
for(int j = ;j <= ;j++){
if(arry[j]){
arry[j]+=;
sum*=arry[j];
}
}
return sum;
}
  • 3.分解质因数:
 void check(int n){
int n1 = n,sum = ;
for(int j = ;j<=sqrt(n);j++){
while(n1 % j == ){
n1 /= j;
cout << j << "\t";
}
}cout << n1;
}
  • 4.GCD(最大公约数)

    两个数:

     scanf("%d%d",&a,&b);
int a1 = a,b1 = b;
if(a < b){
temp = a;
a = b;
b = temp;
}
while(b != ){
temp = a % b;
a = b;
b = temp;
}
printf("%d",a);

    多个数: 

 for(i = ;i<n;i++){
scanf("%d",&arry[i]);
}
//获得最小值
min = arry[];
for(int j = ;j<;j++){
if(arry[j] < min)
min = arry[j];
}
for(a = min;a>;a--){
int sum = ;
for(i = ;i<n;i++){
sum+=arry[i]%a;
}
if(sum == )
break;
}
printf("%d\n",a);
  • 5.LCM(最小公倍数)

    两个数:先计算出A,B的最大公约数C,LCM = A*B/C

    多个数:先求最大公约数,各个数除这个最大公约数所得的各个数,相乘,再乘以这个最大公约数可得这几个数的最小公倍数

      

【基础数学】质数,约数,分解质因数,GCD,LCM的更多相关文章

  1. 【20181027T1】洛阳怀【推结论+线性筛+分解质因数+GCD性质】

    原题:CF402D [错解] 唔,先打个表看看 咦,没有坏质数好像就是质因数个数啊 那有坏质数呢? 好像变负数了 推出错误结论:f(x)=x的质因数个数,如果有个坏质数,就乘上-1 然后乱搞,起码花了 ...

  2. POJ 2429 GCD & LCM Inverse (Pollard rho整数分解+dfs枚举)

    题意:给出a和b的gcd和lcm,让你求a和b.按升序输出a和b.若有多组满足条件的a和b,那么输出a+b最小的.思路:lcm=a*b/gcd   lcm/gcd=a/gcd*b/gcd 可知a/gc ...

  3. [学习笔记] Miller-Rabin质数测试 & Pollard-Rho质因数分解

    目录 Miller-Rabin质数测试 & Pollard-Rho质因数分解 Miller-Rabin质数测试 一些依赖的定理 实现以及正确率 Pollard-Rho质因数分解 生日悖论与生日 ...

  4. UVa 10622 (gcd 分解质因数) Perfect P-th Powers

    题意: 对于32位有符号整数x,将其写成x = bp的形式,求p可能的最大值. 分析: 将x分解质因数,然后求所有指数的gcd即可. 对于负数还要再处理一下,负数求得的p必须是奇数才行. #inclu ...

  5. POJ2429 GCD & LCM Inverse pollard_rho大整数分解

    Given two positive integers a and b, we can easily calculate the greatest common divisor (GCD) and t ...

  6. HDU_3071 Gcd & Lcm game 【素数分解 + 线段树 + 状压】

    一.题目  Gcd & Lcm game 二.分析 非常好的一题. 首先考虑比较暴力的做法,肯定要按区间进行处理,对于$lcm$和$gcd$可以用标准的公式进行求,但是求$lcm$的时候是肯定 ...

  7. 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho

    数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...

  8. light oj 1236 分解质因数

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/H 题意:求满足1<=i<=j<=n ...

  9. Mathematics:GCD & LCM Inverse(POJ 2429)

    根据最大公约数和最小公倍数求原来的两个数 题目大意,不翻译了,就是上面链接的意思. 具体思路就是要根据数论来,设a和b的GCD(最大公约数)和LCM(最小公倍数),则a/GCD*b/GCD=LCM/G ...

随机推荐

  1. Yarn中如何生成状态机图

    原文 http://xiguada.org/yarn_state_picture/ 在Hadoop2.0系列的版本里,采用了状态机的方式处理ResourceManager,NodeManager,Ma ...

  2. 【转】SIP 中的Dialog,call,session 和 transaction

    如果你对Sip协议中Call, Dialog, Transaction和Message之间的关系感觉到迷惑,那么,那么我可以告诉你,你并不孤单,因为大多数初学者对于这些名词之间的关系都会感到疑惑.   ...

  3. Ajax实例-购物车

    一.概述 1.当添加或删除商品时,购物车会立即更新数据 2.思路: (1)建立商品类Item.java,存有商品属性name,prince,code(商品编码)等 (2)建立商品目录类Catalog. ...

  4. CSS3:empty

    :empty ---空的元素样式 <!DOCTYPE html> <html> <head lang="en"> <meta charse ...

  5. Android百度地图开发01之初体验

    做关于位置或者定位的app的时候免不了使用地图功能,本人最近由于项目的需求需要使用百度地图的一些功能,所以这几天研究了一下,现写一下blog记录一下,欢迎大家评论指正! 一.申请AK(API Key) ...

  6. O(1)时间内删除指定链表结点

    题目 给定单链表头指针和一个结点指针,定义一个函数在O(1)时间内删除该结点. 分析 对于上图实例链表(a)删除指针p有两种方式 思路1:(b)找到前一个指针pre,赋值pre->next = ...

  7. USACO Section 4.2: The Perfect Stall

    这题关键就在将题转换成最大流模板题.首先有一个原始点,N个cow个点, M个barn点和一个终点,原始点到cow点和barn点到终点的流都为1,而cow对应的barn就是cow点到对应barn点的流, ...

  8. ftrace的使用【转】

    转自:http://blog.csdn.net/cybertan/article/details/8258394 This article explains how to set up ftrace ...

  9. js调用高德API获取所在当前城市

    可以在js代码中直接调用API接口,获取所处当前城市信息,代码如下: <script type="text/javascript"> function getCurre ...

  10. Socket 通信原理(Android客户端和服务器以TCP&&UDP方式互通)

    转载地址:http://blog.csdn.net/mad1989/article/details/9147661 ZERO.前言 有关通信原理内容是在网上或百科整理得到,代码部分为本人所写,如果不当 ...