nyoj CO-PRIME 莫比乌斯反演
CO-PRIME
- 描述
-
This problem is so easy! Can you solve it?
You are given a sequence which contains n integers a1,a2……an, your task is to find how many pair(ai, aj)(i < j) that ai and aj is co-prime.
- 输入
- There are multiple test cases.
Each test case conatains two line,the first line contains a single integer n,the second line contains n integers.
All the integer is not greater than 10^5. - 输出
- For each test case, you should output one line that contains the answer.
- 样例输入
-
3
1 2 3 - 样例输出
-
3 思路: http://blog.csdn.net/lyhvoyage/article/details/38455415应该是出题的人吧。
分析:莫比乌斯反演。
此题中,设F(d)表示n个数中gcd为d的倍数的数有多少对,f(d)表示n个数中gcd恰好为d的数有多少对,
则F(d)=∑f(n) (n % d == 0)
f(d)=∑mu[n / d] * F(n) (n %d == 0)
上面两个式子是莫比乌斯反演中的式子。
所以要求互素的数有多少对,就是求f(1)。
而根据上面的式子可以得出f(1)=∑mu[n] * F(n)。
所以把mu[]求出来,枚举n就行了,其中mu[i]为i的莫比乌斯函数。
#include<iostream>
#include<stdio.h>
#include<cstring>
#include<cstdlib>
using namespace std;
const int N = 1e5+; int vis[N];
int mu[N];
int prime[N],cnt;
int date[N];
long long ys[N];
int num[N];
void init()
{
memset(vis,,sizeof(vis));
mu[] = ;
cnt = ;
for(int i=;i<N;i++)
{
if(!vis[i])
{
prime[cnt++] = i;
mu[i] = -;
}
for(int j = ;j<cnt&&i*prime[j]<N;j++)
{
vis[i*prime[j]] = ;
if(i%prime[j]) mu[i*prime[j]] = -mu[i];
else
{
mu [i *prime[j]] = ;
break;
}
}
}
}
int main()
{
int n,maxn;
init();
while(scanf("%d",&n)>)
{
memset(num,,sizeof(num));
memset(ys,,sizeof(ys));
maxn = -;
for(int i=;i<=n;i++){
scanf("%d",&date[i]);
num[date[i]] ++;
if(date[i]>maxn) maxn = date[i];
}
/***计算F(N)*/
for(int i=;i<=maxn;i++)
{
for(int j=i;j<=maxn;j=j+i)
{
ys[i] = ys[i] + num[j];
}
}
long long sum = ;
for(int i=;i<=maxn;i++){
long long tmp = (long long)ys[i] *( ys[i]- )/;
sum = sum + mu[i]*tmp;
} printf("%I64d\n",sum);
}
return ;
}
nyoj CO-PRIME 莫比乌斯反演的更多相关文章
- 【XSY2719】prime 莫比乌斯反演
题目描述 设\(f(i)\)为\(i\)的不同的质因子个数,求\(\sum_{i=1}^n2^{f(i)}\) \(n\leq{10}^{12}\) 题解 考虑\(2^{f(i)}\)的意义:有\(f ...
- hdu1695 GCD(莫比乌斯反演)
题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...
- Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...
- 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2371 Solved: 1143[Submit][Sta ...
- POI2007_zap 莫比乌斯反演
题意:http://hzwer.com/4205.html 同hdu1695 #include <iostream> #include <cstring> #include & ...
- hdu.5212.Code(莫比乌斯反演 && 埃氏筛)
Code Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total Submi ...
- CSU 1325 莫比乌斯反演
题目大意: 一.有多少个有序数对(x,y)满足1<=x<=A,1<=y<=B,并且gcd(x,y)为p的一个约数: 二.有多少个有序数对(x,y)满足1<=x<=A ...
- HDU 1695 GCD (莫比乌斯反演)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- 【BZOJ-4407】于神之怒加强版 莫比乌斯反演 + 线性筛
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 241 Solved: 119[Submit][Status][Discu ...
随机推荐
- [原创]java WEB学习笔记61:Struts2学习之路--通用标签 property,uri,param,set,push,if-else,itertor,sort,date,a标签等
本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱 ...
- Python学习总结8:文件模式及操作方法汇总
文件操作之前需要文件保证文件存在,并且将文件open os.mknod("test.txt") 创建空文件 fp = open("test.txt" ...
- Appium的理念
1.Appium的架构:C/S模式 Appium的核心是暴漏REST API的WebServer,appium接收来自客户端的连接请求,监听由客户端发起的命令,在移动设备上执行这些命令,这些命令的执行 ...
- javascript语法详解
javascript语法:运算符 条件语句if...else... 条件语句switch 循环语句for 循环语句while 跳转语句 js运算符 1.算数运算符:+ - * % / ++ ...
- 有趣的linux命令
安装工具 debian => apt-get (In Debian like OS) red hat=> yum -y (In Red Hat like OS) mac => bre ...
- Oracle游标总结三
-- 声明游标:CURSOR cursor_name IS select_statement --For 循环游标--(1)定义游标--(2)定义游标变量--(3)使用for循环来使用这个游标,for ...
- 夺命雷公狗---DEDECMS----11dedecms字段标签
如果我们在开发的时候需要对获取的某个字段进行二次开发,我们可以对字段值调用某个函数来完成需求, 实例代码如下所示: <!DOCTYPE html> <html> <hea ...
- Android2.2快速入门 zz
http://www.cnblogs.com/over140/archive/2010/09/27/1836567.html 前言 这是前段时间用于公司Android入门培训的资料,学习Android ...
- [sinatra] Just Do It: Learn Sinatra, Part One Darren Jones
1. Install sinatra gem gem install sinatra --no-ri --no-rdoc 2. Basic App #!/usr/bin/ruby require 's ...
- Openstack的镜像属性
先来看张图: 容易理解的地方我们就不介绍了,我们这里介绍'公有'和'受保护'的 在shell命令中,公有用is-public=True表示,而受保护的用is-protected表示,公有的反面是is- ...