[comment]: # 机器学习实战 - 读书笔记(11) - 使用Apriori算法进行关联分析

前言

最近在看Peter Harrington写的“机器学习实战”,这是我的学习心得,这次是第11章 - 使用Apriori算法进行关联分析。

基本概念

  • 关联分析(association analysis)或者关联规则学习(association rule learning)

    这是非监督学习的一个特定的目标:发现数据的关联(association)关系。简单的说,就是那些数据(或者数据特征)会一起出现。

    关联分析的目标包括两项:发现频繁项集和发现关联规则。首先需要找到频繁项集,然后才能获得关联规则。

    频繁项集告诉我们哪些项集会经常出现,以及出现的支持概率。

    关联规则告诉我们频繁项集中出现的关联规则,哪些原因项的出现决定另外一些结果项的出现,以及规则的可信概率。

  • 关联(association)

    一个关联是一个满足最小支持度的项集。

  • 关联规则(association rule)

    关联规则

\[X \Rightarrow Y \\
Where \\
\qquad X,Y\subseteq I \text{ and } X\cap Y=\emptyset \\
\qquad \text{I: an items set}
\]

  • 前提集(antecedent)

    也称为前件、左手边。是关联规则\(X \Rightarrow Y\)的\(X\)部分。

  • 结果集(consequent)

    也称为前后件、右手边。是关联规则\(X \Rightarrow Y\)的\(Y\)部分。

  • 项集 (items set)

    一个项集包含一个或者多个元素项。

    比如:{a} {b} {c} {ab} {ac} {bc} {abc}是7个项集。

  • 子集

    {a} {b} {c} {ab} {ac} {bc} 都是的{abc}一个子集。

  • 超集

    与子集相反:{ab}是{a}的一个超集。

  • 支持度(support)

    关联项集的频繁度。

  • 可信度(confidence)

    关联规则的可信度。

核心算法

Apriori算法:生成频繁项集

Apriori 是 A priori, “一个先验”的意思。可以说是一种发现关联的优化算法。

以购买商品为例,每条数据是一个交易的商品清单。我们是否可以发现哪些商品组合更容易出现?

客户可能购买1个商品,或者最多n个商品,如果商店一共有m个商品,那么共有种 \(\textstyle \coprod_{i=1}^n {m + 1 -i}\) 组合方式。

计算每种组合方式的出现概率虽然看起来简单,但是效率非常低。

  • Apriori生成频繁项集算法的原理说明

    如果一个项集是非频繁集,那么它的所有超集也是非频繁的。

    假设数据集中只有4元素:1234

    可能的关联规则根据结果项的项数分为4个level:

    发现{4}是一个低支持度项集,则在Level 2中剪除含有{4}的项集,以此类推。

    Level 1: 1; 2; 3; 4

    Level 2: 12; 13; 14; 23; 24; 34

    Level 3: 123; 124; 134; 234

    Level 4: 1234

  • 输入

    • DateSet
    • 最小支持度:Minimum Support
  • 输出

    • 项集[项数 - 1, 项集]
    • 项集的支持度[项集, 支持度]
  • 逻辑过程

因此,它先计算1个元素的概率,去掉不满足最小支持度的项集,得到项集集合C1和每个项集的支持度;
然后在项集集合C1的基础上,找2个元素的支持度(这时将不会考虑去掉的项集,所以性能会优化),再去掉不满足最小支持度的2项项集,得到项集C2和每个项集的支持度;
以此类推,直到得到项集Cm和每个项集的支持度。

Apriori算法:从频繁项集中生成关联规则

  • Apriori生成关联规则算法的原理说明

    在一个频繁项集中,如果p -> h是一条低可信度规则,那么,所有其它以h的超集作为后件的规则,可信度也会较低。

    关联规则是根据每个项集生成的。我们举个有4个项的项集为例:

    项集:1234

    可能的关联规则根据结果项的项数分为3个level:

    发现[123 > 4]是一个低可信度规则,则在Level 2中剪除结果项集中含有{4}的规则,以此类推。

    Level 1: 234 > 1; 134 > 2; 124 > 3; 123 > 4

    Level 2: 34 > 12; 24 > 13; 23 > 14; 14 > 23; 13 > 24; 12 > 34

    Level 3: 4 > 123; 3 > 124; 2 > 134; 1 > 234

  • generateRules

    • 输入

      • 频繁项集[项数 - 1, 项集]
      • 项集的支持度[项集, 支持度]
      • 最小可信度:Minimum confidence
    • 输出
      • 关联规则[因项集,果项集,可信度]
    • 逻辑过程
对每个Level的项集(Level>0):
对当前Level的每个项集:
获取项集的元素List.
如果Level = 1(2个项数的项集):
calculateConfidence(当前项集,元素List,项集的支持度,关联规则, 最小可信度)
如果Level > 1(至少3个项数的项集):
rulesFromConsequence(当前项集,元素List,项集的支持度,关联规则, 最小可信度)
  • calculateConfidence

    • 输入

      • 项集
      • 目标项集List
      • 项集的支持度[项集, 支持度]
      • 关联规则[因项集,果项集,可信度]
      • 最小可信度:Minimum confidence
    • 输出
      • 有效目标集
    • 逻辑过程
对每个目标项集
计算当前目标项集在当前项集上的可信度。
如果可信度大于最小可信度:
把[当前项集 - 目标项集, 目标项集, 可信度]加入关联规则;
把当前目标项集加入有效目标集。
返回有效目标集
  • rulesFromConsequence

    • 输入

      • 项集
      • 目标项集List
      • 项集的支持度[项集, 支持度]
      • 关联规则[因项集,果项集,可信度]
      • 最小可信度:Minimum confidence
    • 输出
    • 逻辑过程
得到目标项集长度m.
如果当前项集元素的长度 > m + 1:
得到目标项集元素个数为m + 1的目标项集List。
有效目标集 = calculateConfidence(当前项集,目标项集,项集的支持度,关联规则, 最小可信度)
如果有效目标集的长度 > 1:
rulesFromConsequence(当前项集,有效目标集,项集的支持度,关联规则, 最小可信度)。

核心公式

  • 支持度(support level):

\[S(C, X) = \frac{count(C)}{len(X)} \\
where \\
\qquad S(C, X) : 项集C的支持度 \\
\qquad C : 项集 \\
\qquad X : 数据集
\]

  • 可信度(confidence level): 一条规则P -> H的可信度定义为:

\[C(P, H) = \frac{support(P | H)}{support(P)} \\
where \\
\qquad C(P, H) : 关联规则P -> H的可信度 \\
\qquad P : 项集 \\
\qquad H : 项集 \\
\qquad support(P) : 项集P的支持度 \\
\qquad support(P | H) : 项集P,H并集的支持度
\]

参考

  • Machine Learning in Action by Peter Harrington

机器学习实战 - 读书笔记(11) - 使用Apriori算法进行关联分析的更多相关文章

  1. 机器学习实战 - 读书笔记(12) - 使用FP-growth算法来高效发现频繁项集

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第12章 - 使用FP-growth算法来高效发现频繁项集. 基本概念 FP-growt ...

  2. 机器学习实战(Machine Learning in Action)学习笔记————07.使用Apriori算法进行关联分析

    机器学习实战(Machine Learning in Action)学习笔记————07.使用Apriori算法进行关联分析 关键字:Apriori.关联规则挖掘.频繁项集作者:米仓山下时间:2018 ...

  3. 机器学习实战读书笔记(二)k-近邻算法

    knn算法: 1.优点:精度高.对异常值不敏感.无数据输入假定 2.缺点:计算复杂度高.空间复杂度高. 3.适用数据范围:数值型和标称型. 一般流程: 1.收集数据 2.准备数据 3.分析数据 4.训 ...

  4. 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 核心思想 在使用某个特定的算法是, ...

  5. 【机器学习实战】第11章 使用 Apriori 算法进行关联分析

    第 11 章 使用 Apriori 算法进行关联分析 关联分析 关联分析是一种在大规模数据集中寻找有趣关系的任务. 这些关系可以有两种形式: 频繁项集(frequent item sets): 经常出 ...

  6. 机器学习实战 - 读书笔记(13) - 利用PCA来简化数据

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第13章 - 利用PCA来简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. ...

  7. 【转载】 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能

    原文地址: https://www.cnblogs.com/steven-yang/p/5686473.html ------------------------------------------- ...

  8. 【机器学习实战学习笔记(1-1)】k-近邻算法原理及python实现

    笔者本人是个初入机器学习的小白,主要是想把学习过程中的大概知识和自己的一些经验写下来跟大家分享,也可以加强自己的记忆,有不足的地方还望小伙伴们批评指正,点赞评论走起来~ 文章目录 1.k-近邻算法概述 ...

  9. 机器学习实战 - 读书笔记(14) - 利用SVD简化数据

    前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第14章 - 利用SVD简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. 基 ...

随机推荐

  1. 重构第1天:封装集合(Encapsulate Collection)

    理解:封装集合就是把集合进行封装,只提供调用者所需要的功能行借口,保证集合的安全性. 详解:在大多的时候,我们没有必要把所有的操作暴露给调用者,只需要把调用者需要的相关操作暴露给他,这种情况中下我们就 ...

  2. SQL1159 Initialization error with DB2 .NET Data Provider, reason code 7(问题补充)

    SQL1159 Initialization error with DB2 .NET Data Provider, reason code 7 需要注册GAC,修改注册表 IBM官方方案: http: ...

  3. CGAL4.4+VC2008编译

    一: CGAL是欧盟资助的基础几何库,很底层, 纯算法, 对于你的项目和科研都是不可多得的好东西, 废话一句, 国内做这样的东西, 估计会活不下去交不了差的. 不多介绍.送上 英文原址, 从软件角度, ...

  4. easyui filebox 浏览图片

    <img id="image1"/> <input id="f1" class="easyui-filebox" name ...

  5. WCF学习日记

    图书馆借阅了<WCF高级编程>,从6.11开始学习wcf,希望尽快熟悉原理和编程模型以及常用编程方法.     WCF是一个平台,也是一个框架,从Net.3.0 就在Net framewo ...

  6. jquery getJSON

    function onNodeClick(data) {            //只能选择体检分组            if (data.GroupType == 1) {             ...

  7. 数据可视化(5)--jqplot经典实例

    本来想把实例也写到上篇博客里,最后发现太长了,拆成两篇博客了. 实例来源于官方文档:http://www.jqplot.com/tests/ 这篇博客主要是翻译了官方文档关于经典实例的解说,并在相应代 ...

  8. 在Eclipse中进行HotSpot的源码调试--转

    原文地址:http://www.linuxidc.com/Linux/2015-05/117250.htm 在阅读OpenJDK源码的过程中,经常需要运行.调试程序来帮助理解.我们现在已经可以编译出一 ...

  9. [Node.js] Cluster,把多核用起来

    原文地址: http://www.moye.me/?p=496 引子 众所周知,虽然Node的底层有一个IO线程池,但其应用层默认是单线程运行的,对于多核CPU环境来说,是一种资源的浪费. 所幸Nod ...

  10. Origami – 用于 Quartz 的免费的交互设计框架

    Origami 是一个为 Quartz Composer 开发的免费的工具包——由Facebook设计团队创建,让交互设计原型更加简单,不需要编程. 如今,大多数设计师通过创建静态原型来表达要实现的应 ...