题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5029

Problem Description
The soil is cracking up because of the drought and the rabbit kingdom is facing a serious famine. The RRC(Rabbit Red Cross) organizes the distribution of relief grain in the disaster area.

We can regard the kingdom as a tree with n nodes and each node stands for a village. The distribution of the relief grain is divided into m phases. For each phases, the RRC will choose a path of the tree and distribute some relief grain of a certain type for every village located in the path.

There are many types of grains. The RRC wants to figure out which type of grain is distributed the most times in every village.

 
Input
The input consists of at most 25 test cases.

For each test case, the first line contains two integer n and m indicating the number of villages and the number of phases.

The following n-1 lines describe the tree. Each of the lines contains two integer x and y indicating that there is an edge between the x-th village and the y-th village.
  
The following m lines describe the phases. Each line contains three integer x, y and z indicating that there is a distribution in the path from x-th village to y-th village with grain of type z. (1 <= n <= 100000, 0 <= m <= 100000, 1 <= x <= n, 1 <= y <= n, 1 <= z <= 100000)

The input ends by n = 0 and m = 0.

 
Output
For each test case, output n integers. The i-th integer denotes the type that is distributed the most times in the i-th village. If there are multiple types which have the same times of distribution, output the minimal one. If there is no relief grain in a village, just output 0.
 
题目大意:有一棵n个点的数,有m个操作,每次给路径path(x, y)分配一个值z。最后问每个点被分配次数最多的值,如有多个输出最小的一个。
思路:首先我们可以注意到,要输出结果只有最后一个,所有操作的顺序都是无关紧要的,我们可以按自己喜欢的顺序来做。
 
这个问题是在树上做的,我们先来简化一下问题,如果这是一维的线段,每次在一个区间上操作,怎么办。
这个问题的解法是,按值建树,对于每一个操作(x, y, z),也就是给区间[x, y + 1)分配资源,可以给 x 标记一个 +z,给 y + 1 标记一个 -z。
按坐标从左往右扫,对于每一个 x,把所有标记压入线段树,然后再求 x 的答案。总体复杂度为O(nlogn)。
 
回到本题的问题,这题是在树上做的,按上面的做法,可以想到,对于操作(x, y, z),求出其lca,把它分为两条链[x, lca],[y, lca)。
然后按dfs序做,此时对于每一个结点,我们在做完它的所有子节点后,要把子节点的所有线段树合并,再加上它自身的标记,再求出这个结点的答案。
但是随意地合并线段树,可能会使得复杂度高达O(n^2logn)。这里采取启发式合并,每次把小的线段树合并到大的线段树上。
不考虑减的标记,标记最多有3n个,那么每个标记被合并之后,它所在的线段树大小至少会增加两倍,那么最多被合并O(logn)次。
在考虑减的标记的时候,虽然上述分析不适用了,但是感觉上减少了标记只会令复杂度降低。所以总复杂度为O(n(logn)^2)。
 
代码(3046MS):
 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
typedef pair<int, int> PII; const int MAXV = ;
const int MAXE = MAXV << ;
const int MAXT = MAXV << ; int head[MAXV], ecnt;
int to[MAXE], next[MAXE];
int n, m, maxz; void init() {
memset(head + , -, n * sizeof(int));
ecnt = ;
} void add_edge(int u, int v) {
to[ecnt] = v; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; next[ecnt] = head[v]; head[v] = ecnt++;
} #define mid ((l + r) >> 1)
struct Node {
Node *lson, *rson;
int val, cnt, size;
Node() {
val = cnt = size = ;
}
void update() {
Node *s = lson->cnt >= rson->cnt ? lson : rson;
val = s->val;
cnt = s->cnt;
size = lson->size + rson->size;
}
} *nil;
Node statePool[MAXT * ];
Node *stk[MAXT * ];
int top, scnt; Node* new_node() {
Node *p;
if(top) p = stk[--top];
else p = &statePool[scnt++];
p->lson = p->rson = nil;
p->val = p->cnt = p->size = ;
return p;
} void del_node(Node *p) {
stk[top++] = p;
} void remove(Node *y) {
if(y->lson != nil) remove(y->lson);
if(y->rson != nil) remove(y->rson);
del_node(y);
} void modify(Node *&x, int l, int r, int pos, int val) {
if(x == nil) x = new_node();
if(l == r) {
x->val = l;
x->cnt += val;
x->size = (x->cnt > );
} else {
if(pos <= mid) modify(x->lson, l, mid, pos, val);
if(mid < pos) modify(x->rson, mid + , r, pos, val);
x->update();
}
} void merge(Node *x, Node *y, int l, int r) {
if(y->size != ) {
if(l == r) {
modify(x, , maxz, l, y->cnt);
} else {
merge(x, y->lson, l, mid);
merge(x, y->rson, mid + , r);
}
}
} Node* merge(Node *x, Node *y) {
if(x->size < y->size) swap(x, y);
merge(x, y, , maxz);
remove(y);
return x;
} vector<PII> query[MAXV];
struct Modify {
int u, v, c, lca;
void read(int i) {
scanf("%d%d%d", &u, &v, &c);
maxz = max(maxz, c);
query[u].push_back(make_pair(v, i));
query[v].push_back(make_pair(u, i));
}
} ask[MAXV];
int fa[MAXV];
bool vis[MAXV]; int find_set(int x) {
return fa[x] == x ? x : fa[x] = find_set(fa[x]);
} void lca(int u, int f) {
for(int p = head[u]; ~p; p = next[p]) {
int &v = to[p];
if(v == f || vis[v]) continue;
lca(v, u);
fa[v] = u;
}
vis[u] = true;
for(vector<PII>::iterator it = query[u].begin(); it != query[u].end(); ++it) {
if(vis[it->first]) {
ask[it->second].lca = find_set(it->first);
}
}
} vector<PII> pre[MAXV], nxt[MAXV];
int ans[MAXV]; Node* dfs(int u, int f) {
Node *x = new_node();
for(int p = head[u]; ~p; p = next[p]) {
int v = to[p];
if(v == f) continue;
x = merge(x, dfs(v, u));
}
for(vector<PII>::iterator it = pre[u].begin(); it != pre[u].end(); ++it)
modify(x, , maxz, it->first, it->second);
ans[u] = x->val;
for(vector<PII>::iterator it = nxt[u].begin(); it != nxt[u].end(); ++it)
modify(x, , maxz, it->first, it->second);
return x;
} void solve() {
for(int i = ; i <= n; ++i) {
fa[i] = i;
vis[i] = false;
pre[i].clear(); nxt[i].clear();
}
lca(, );
for(int i = ; i < m; ++i) {
const Modify &t = ask[i];
pre[t.u].push_back(make_pair(t.c, ));
pre[t.v].push_back(make_pair(t.c, ));
pre[t.lca].push_back(make_pair(t.c, -));
nxt[t.lca].push_back(make_pair(t.c, -));
}
top = scnt = ;
Node *p = dfs(, );
if(p != nil) remove(p); for(int i = ; i <= n; ++i)
printf("%d\n", ans[i]);
} int main() {
nil = new Node();
nil->lson = nil->rson = nil; while(scanf("%d%d", &n, &m) != EOF) {
if(n == && m == ) break;
init();
for(int i = , u, v; i < n; ++i) {
scanf("%d%d", &u, &v);
add_edge(u, v);
}
for(int i = ; i <= n; ++i) query[i].clear();
maxz = ;
for(int i = ; i < m; ++i) ask[i].read(i);
solve();
}
}

HDU 5029 Relief grain(离线+线段树+启发式合并)(2014 ACM/ICPC Asia Regional Guangzhou Online)的更多相关文章

  1. HDU 4747 Mex(线段树)(2013 ACM/ICPC Asia Regional Hangzhou Online)

    Problem Description Mex is a function on a set of integers, which is universally used for impartial ...

  2. HDU 4719 Oh My Holy FFF(DP+线段树)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)

    Description N soldiers from the famous "*FFF* army" is standing in a line, from left to ri ...

  3. HDU 5052 Yaoge’s maximum profit 光秃秃的树链拆分 2014 ACM/ICPC Asia Regional Shanghai Online

    意甲冠军: 特定n小点的树权. 以下n每一行给出了正确的一点点来表达一个销售点每只鸡价格的格 以下n-1行给出了树的侧 以下Q操作 Q行 u, v, val 从u走v,程中能够买一个鸡腿,然后到后面卖 ...

  4. hdu 5016 点分治(2014 ACM/ICPC Asia Regional Xi'an Online)

    Mart Master II Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  5. HDU 5889 Barricade 【BFS+最小割 网络流】(2016 ACM/ICPC Asia Regional Qingdao Online)

    Barricade Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  6. HDU 4729 An Easy Problem for Elfness(主席树)(2013 ACM/ICPC Asia Regional Chengdu Online)

    Problem Description Pfctgeorge is totally a tall rich and handsome guy. He plans to build a huge wat ...

  7. HDU 5002 Tree(动态树LCT)(2014 ACM/ICPC Asia Regional Anshan Online)

    Problem Description You are given a tree with N nodes which are numbered by integers 1..N. Each node ...

  8. HDU 4757 Tree(可持久化字典树)(2013 ACM/ICPC Asia Regional Nanjing Online)

    Problem Description   Zero and One are good friends who always have fun with each other. This time, ...

  9. HDU 4069 Squiggly Sudoku(DLX)(The 36th ACM/ICPC Asia Regional Fuzhou Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4069 Problem Description Today we play a squiggly sud ...

随机推荐

  1. Java高级之线程同步

    本文来自http://blog.csdn.net/liuxian13183/ ,引用必须注明出处! 关于实现多线程的意义,"从业四年看并发"一文已经讲述,而本篇主要讲一下常用的设计 ...

  2. .NET 可空值类型

    Microsoft在CLR中引入了可空值类型(nullable value type)的概念. FCL中定义System.Nullable<T>类如下: [Serializable,Str ...

  3. BAT for循环

    一,数字循环 echo off & color 0A for /l %%i in (1,1,10) do ( echo %%i ) pause > nul 输出: 1 2 3 4 5 6 ...

  4. Largest Number || LeetCode

    #include <stdio.h> #include <stdlib.h> #include <string.h> #define MAX 1000 int cm ...

  5. CodeMIrror 简单使用

    代码高亮是程序员的刚需,不管是在笔记类,论坛类,博客类web网站中,都对代码高亮提出要求,不高亮的代码阅读体验很差,codeMirror是一个前端代码高亮库,使用方便. codeMirror可以直接在 ...

  6. pickle 数据对象的序列化和反序列化

    python的pickle模块实现了基本的数据序列和反序列化.通过pickle模块的序列化操作我们能够将程序中运行的对象信息保存到文件中去,永久存储:通过pickle模块的反序列化操作,我们能够从文件 ...

  7. Sqlcompletefree

    Sqlcompletefree SQLSERVER中SQL代码自动提示填充,自动格式化SQL语句工具Sqlcompletefree.方便开发操作.

  8. ie8兼容border-radius方法

    <!doctype html><html> <head>        <meta charset="utf-8" />    &l ...

  9. OProfile 性能分析工具

    OProfile 性能分析工具 官方网站:http://oprofile.sourceforge.net/news/ oprofile.ko模块本文主要介绍Oprofile工具,适用系统的CPU性能分 ...

  10. 浅析 Linux 初始化 init 系统,第 1 部分: sysvinit 第 2 部分: UpStart 第 3 部分: Systemd

    浅析 Linux 初始化 init 系统,第 1 部分: sysvinit  第 2 部分: UpStart 第 3 部分: Systemd http://www.ibm.com/developerw ...