题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5029

Problem Description
The soil is cracking up because of the drought and the rabbit kingdom is facing a serious famine. The RRC(Rabbit Red Cross) organizes the distribution of relief grain in the disaster area.

We can regard the kingdom as a tree with n nodes and each node stands for a village. The distribution of the relief grain is divided into m phases. For each phases, the RRC will choose a path of the tree and distribute some relief grain of a certain type for every village located in the path.

There are many types of grains. The RRC wants to figure out which type of grain is distributed the most times in every village.

 
Input
The input consists of at most 25 test cases.

For each test case, the first line contains two integer n and m indicating the number of villages and the number of phases.

The following n-1 lines describe the tree. Each of the lines contains two integer x and y indicating that there is an edge between the x-th village and the y-th village.
  
The following m lines describe the phases. Each line contains three integer x, y and z indicating that there is a distribution in the path from x-th village to y-th village with grain of type z. (1 <= n <= 100000, 0 <= m <= 100000, 1 <= x <= n, 1 <= y <= n, 1 <= z <= 100000)

The input ends by n = 0 and m = 0.

 
Output
For each test case, output n integers. The i-th integer denotes the type that is distributed the most times in the i-th village. If there are multiple types which have the same times of distribution, output the minimal one. If there is no relief grain in a village, just output 0.
 
题目大意:有一棵n个点的数,有m个操作,每次给路径path(x, y)分配一个值z。最后问每个点被分配次数最多的值,如有多个输出最小的一个。
思路:首先我们可以注意到,要输出结果只有最后一个,所有操作的顺序都是无关紧要的,我们可以按自己喜欢的顺序来做。
 
这个问题是在树上做的,我们先来简化一下问题,如果这是一维的线段,每次在一个区间上操作,怎么办。
这个问题的解法是,按值建树,对于每一个操作(x, y, z),也就是给区间[x, y + 1)分配资源,可以给 x 标记一个 +z,给 y + 1 标记一个 -z。
按坐标从左往右扫,对于每一个 x,把所有标记压入线段树,然后再求 x 的答案。总体复杂度为O(nlogn)。
 
回到本题的问题,这题是在树上做的,按上面的做法,可以想到,对于操作(x, y, z),求出其lca,把它分为两条链[x, lca],[y, lca)。
然后按dfs序做,此时对于每一个结点,我们在做完它的所有子节点后,要把子节点的所有线段树合并,再加上它自身的标记,再求出这个结点的答案。
但是随意地合并线段树,可能会使得复杂度高达O(n^2logn)。这里采取启发式合并,每次把小的线段树合并到大的线段树上。
不考虑减的标记,标记最多有3n个,那么每个标记被合并之后,它所在的线段树大小至少会增加两倍,那么最多被合并O(logn)次。
在考虑减的标记的时候,虽然上述分析不适用了,但是感觉上减少了标记只会令复杂度降低。所以总复杂度为O(n(logn)^2)。
 
代码(3046MS):
 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
typedef pair<int, int> PII; const int MAXV = ;
const int MAXE = MAXV << ;
const int MAXT = MAXV << ; int head[MAXV], ecnt;
int to[MAXE], next[MAXE];
int n, m, maxz; void init() {
memset(head + , -, n * sizeof(int));
ecnt = ;
} void add_edge(int u, int v) {
to[ecnt] = v; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; next[ecnt] = head[v]; head[v] = ecnt++;
} #define mid ((l + r) >> 1)
struct Node {
Node *lson, *rson;
int val, cnt, size;
Node() {
val = cnt = size = ;
}
void update() {
Node *s = lson->cnt >= rson->cnt ? lson : rson;
val = s->val;
cnt = s->cnt;
size = lson->size + rson->size;
}
} *nil;
Node statePool[MAXT * ];
Node *stk[MAXT * ];
int top, scnt; Node* new_node() {
Node *p;
if(top) p = stk[--top];
else p = &statePool[scnt++];
p->lson = p->rson = nil;
p->val = p->cnt = p->size = ;
return p;
} void del_node(Node *p) {
stk[top++] = p;
} void remove(Node *y) {
if(y->lson != nil) remove(y->lson);
if(y->rson != nil) remove(y->rson);
del_node(y);
} void modify(Node *&x, int l, int r, int pos, int val) {
if(x == nil) x = new_node();
if(l == r) {
x->val = l;
x->cnt += val;
x->size = (x->cnt > );
} else {
if(pos <= mid) modify(x->lson, l, mid, pos, val);
if(mid < pos) modify(x->rson, mid + , r, pos, val);
x->update();
}
} void merge(Node *x, Node *y, int l, int r) {
if(y->size != ) {
if(l == r) {
modify(x, , maxz, l, y->cnt);
} else {
merge(x, y->lson, l, mid);
merge(x, y->rson, mid + , r);
}
}
} Node* merge(Node *x, Node *y) {
if(x->size < y->size) swap(x, y);
merge(x, y, , maxz);
remove(y);
return x;
} vector<PII> query[MAXV];
struct Modify {
int u, v, c, lca;
void read(int i) {
scanf("%d%d%d", &u, &v, &c);
maxz = max(maxz, c);
query[u].push_back(make_pair(v, i));
query[v].push_back(make_pair(u, i));
}
} ask[MAXV];
int fa[MAXV];
bool vis[MAXV]; int find_set(int x) {
return fa[x] == x ? x : fa[x] = find_set(fa[x]);
} void lca(int u, int f) {
for(int p = head[u]; ~p; p = next[p]) {
int &v = to[p];
if(v == f || vis[v]) continue;
lca(v, u);
fa[v] = u;
}
vis[u] = true;
for(vector<PII>::iterator it = query[u].begin(); it != query[u].end(); ++it) {
if(vis[it->first]) {
ask[it->second].lca = find_set(it->first);
}
}
} vector<PII> pre[MAXV], nxt[MAXV];
int ans[MAXV]; Node* dfs(int u, int f) {
Node *x = new_node();
for(int p = head[u]; ~p; p = next[p]) {
int v = to[p];
if(v == f) continue;
x = merge(x, dfs(v, u));
}
for(vector<PII>::iterator it = pre[u].begin(); it != pre[u].end(); ++it)
modify(x, , maxz, it->first, it->second);
ans[u] = x->val;
for(vector<PII>::iterator it = nxt[u].begin(); it != nxt[u].end(); ++it)
modify(x, , maxz, it->first, it->second);
return x;
} void solve() {
for(int i = ; i <= n; ++i) {
fa[i] = i;
vis[i] = false;
pre[i].clear(); nxt[i].clear();
}
lca(, );
for(int i = ; i < m; ++i) {
const Modify &t = ask[i];
pre[t.u].push_back(make_pair(t.c, ));
pre[t.v].push_back(make_pair(t.c, ));
pre[t.lca].push_back(make_pair(t.c, -));
nxt[t.lca].push_back(make_pair(t.c, -));
}
top = scnt = ;
Node *p = dfs(, );
if(p != nil) remove(p); for(int i = ; i <= n; ++i)
printf("%d\n", ans[i]);
} int main() {
nil = new Node();
nil->lson = nil->rson = nil; while(scanf("%d%d", &n, &m) != EOF) {
if(n == && m == ) break;
init();
for(int i = , u, v; i < n; ++i) {
scanf("%d%d", &u, &v);
add_edge(u, v);
}
for(int i = ; i <= n; ++i) query[i].clear();
maxz = ;
for(int i = ; i < m; ++i) ask[i].read(i);
solve();
}
}

HDU 5029 Relief grain(离线+线段树+启发式合并)(2014 ACM/ICPC Asia Regional Guangzhou Online)的更多相关文章

  1. HDU 4747 Mex(线段树)(2013 ACM/ICPC Asia Regional Hangzhou Online)

    Problem Description Mex is a function on a set of integers, which is universally used for impartial ...

  2. HDU 4719 Oh My Holy FFF(DP+线段树)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)

    Description N soldiers from the famous "*FFF* army" is standing in a line, from left to ri ...

  3. HDU 5052 Yaoge’s maximum profit 光秃秃的树链拆分 2014 ACM/ICPC Asia Regional Shanghai Online

    意甲冠军: 特定n小点的树权. 以下n每一行给出了正确的一点点来表达一个销售点每只鸡价格的格 以下n-1行给出了树的侧 以下Q操作 Q行 u, v, val 从u走v,程中能够买一个鸡腿,然后到后面卖 ...

  4. hdu 5016 点分治(2014 ACM/ICPC Asia Regional Xi'an Online)

    Mart Master II Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  5. HDU 5889 Barricade 【BFS+最小割 网络流】(2016 ACM/ICPC Asia Regional Qingdao Online)

    Barricade Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  6. HDU 4729 An Easy Problem for Elfness(主席树)(2013 ACM/ICPC Asia Regional Chengdu Online)

    Problem Description Pfctgeorge is totally a tall rich and handsome guy. He plans to build a huge wat ...

  7. HDU 5002 Tree(动态树LCT)(2014 ACM/ICPC Asia Regional Anshan Online)

    Problem Description You are given a tree with N nodes which are numbered by integers 1..N. Each node ...

  8. HDU 4757 Tree(可持久化字典树)(2013 ACM/ICPC Asia Regional Nanjing Online)

    Problem Description   Zero and One are good friends who always have fun with each other. This time, ...

  9. HDU 4069 Squiggly Sudoku(DLX)(The 36th ACM/ICPC Asia Regional Fuzhou Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4069 Problem Description Today we play a squiggly sud ...

随机推荐

  1. nRF51822之WDT浅析

    看门狗定时器 NRF51822 的看门狗定时器是倒计数器, 当计数值减少到 0 时产生 TIMEOUT 事件. 通过 START task 来启动看门狗定时器. 看门狗定时器启动时,如没有其他 32. ...

  2. JS 去字符串空格 总结

    str为要去除空格的字符串: 去除所有空格: str = str.replace(/\s+/g,""); 去除两头空格: str = str.replace(/^\s+|\s+$/ ...

  3. ecshop换用redis做缓存

    <?php /** * ecshop SESSION 保存类 * ================================================================ ...

  4. mysql慢查询

    查看当前服务器是否开启慢查询: 1.快速办法,运行sql语句show VARIABLES like "%slow%" 2.直接去my.conf中查看. my.conf中的配置(放在 ...

  5. 分布式中,zookeeper的部署

    一:准备 1.概述 为分布式应用提供协调服务的项目 类似于文件系统那样的树形数据结构 目的:将分布式服务不再由于协作冲突而另外实现协作服务 2.数据结构 树形数据结构 zookeeper的每个节点都是 ...

  6. Qt设置系统时间(使用SetSystemTime API函数)

    大家都知道Qt中有QDateTime等有关时间与日期的类,类中包含很多成员函数,可以很方便的实现有关时间与日期的操作,比如:想要获得系统当前的时间与日期,可以调用currentDateTime();  ...

  7. 转: PE rva to raw 虚拟偏移地址和文件物理偏移地址

    +---------+---------+---------+---------+---------+---------+| 段名称 虚拟地址 虚拟大小 物理地址 物理大小 标志 |+-------- ...

  8. Wordpress制作sidebar.php

    调用 在主页以下方法可以调用模板中sidebar.php的内容 <?php get_sidebar(); ?> 判断是否自定义sidebar侧边栏: <?php if ( !func ...

  9. json的eval为什么要用msg.d

    在做一个关于搜索功能时用到了jquery autocomplete,发现返回数据时都用到了一个.d,比如: var datas = eval('(' + msg.d + ')'); 这个.d是什么呢, ...

  10. How to pass selected records from form to dilog in AX 2012

    static void main(Args args) { FormDataSource formDataSource; ; if(args.record().TableId == tablenum( ...