背景

之前所讨论的SVM都是非常严格的hard版本,必须要求每个点都被正确的区分开。但是,实际情况时很少出现这种情况的,因为噪声数据时无法避免的。所以,需要在hard SVM上添加容错机制,使得可以容忍少量噪声数据。

 

"软"化问题

软化SVM的思路有点类似正规化,在目标函数添加错误累加项,然后加一个系数,控制对错误的容忍度,并且在约束中添加错误容忍度的约束,形式如下:


 

现在问题就变成了(d+1+N)个变量和2N个约束。ξ用来描述错误的容忍度。C是常量,用来控制容忍度。C越大,由于min的作用,ξ错误就会变小,也就是对错误的容忍度变小,约束变苛刻,边界变窄;反之,容忍度越大,约束变宽松,边界变宽。

 

遇到老熟人

现在,将上面软化后的SVM问题进行对偶转化和简化,得到的结果和之前hard版本十分类似,好像遇到了老熟人。

区别部分用红色高亮了,你会发现只多了N个约束。

 

α的妙用

α仍然可以使用QP方法计算得到,b的求解也是通过complementary slackness,但是在求解b的过程,可以将向量分为三类,很有参考意义,可用于数据分析。

首先看看complementary slackness条件,

当时,向量在边界上或远离边界;

当时,,向量在边界上,称之为free支持向量;

当时,向量在边界上()或者破坏约束()。

 

具体可以参考下图,

 

SVM实战

之前4篇学习笔记,公式理论推导了一大串,感觉有点飘,那么接下来就实战SVM,这样才踏实。使用的libsvm,但是在R中调用,需要'e1071'扩展(install.package('e1071'))。试验数据见这里。直接来代码:

library(e1071)

load('data/train.RData')

train$digit <- sapply(old_train_digit, function(digit) ifelse(digit == '0','0','non-0') )

train$digit <- factor(train$digit)

 

m_svm <- svm(digit~., data = train, scale = FALSE, kernel = 'radial', cost = 1, gamma = 100)

summary(m_svm)

attributes(m_svm)

上面使用了RBF kernel,取C = 1。得到的结果中,有个属性是coefs,之前对这个属性很不了解,但是查看帮助,原文"The corresponding coefficients times the training labels",发现原来就是下面的值,

所以,如果使用线性kernel(也就是不用kernel),可以根据w的公式(如下)很方便的计算出w,

如果想实践QP,推荐使用R扩展包kernlab中的ipop函数。

 

最后,要感谢台湾大学林轩田老师设计出这么好的课程和作业,加深了我对SVM的理解,希望后面可以灵活的应用到实际工作中!

机器学习技法--学习笔记04--Soft SVM的更多相关文章

  1. 机器学习基石--学习笔记01--linear hard SVM

    背景 支持向量机(SVM)背后的数学知识比较复杂,之前尝试过在网上搜索一些资料自学,但是效果不佳.所以,在我的数据挖掘工具箱中,一直不会使用SVM这个利器.最近,台大林轩田老师在Coursera上的机 ...

  2. Coursera台大机器学习技法课程笔记01-linear hard SVM

    极其淡腾的一学期终于过去了,暑假打算学下台大的这门机器学习技法. 第一课是对SVM的介绍,虽然之前也学过,但听了一次感觉还是很有收获的.这位博主总结了个大概,具体细节还是 要听课:http://www ...

  3. 机器学习技法--学习笔记03--Kernel技巧

    背景 上一讲从对偶问题的角度描述了SVM问题,但是始终需要计算原始数据feature转换后的数据.这一讲,通过一个kernel(核函数)技巧,可以省去feature转换计算,但是仍然可以利用featu ...

  4. 机器学习基石--学习笔记02--Hard Dual SVM

    背景 上一篇文章总结了linear hard SVM,解法很直观,直接从SVM的定义出发,经过等价变换,转成QP问题求解.这一讲,从另一个角度描述hard SVM的解法,不那么直观,但是可以避免fea ...

  5. 机器学习实战(Machine Learning in Action)学习笔记————04.朴素贝叶斯分类(bayes)

    机器学习实战(Machine Learning in Action)学习笔记————04.朴素贝叶斯分类(bayes) 关键字:朴素贝叶斯.python.源码解析作者:米仓山下时间:2018-10-2 ...

  6. TensorFlow机器学习框架-学习笔记-001

    # TensorFlow机器学习框架-学习笔记-001 ### 测试TensorFlow环境是否安装完成-----------------------------```import tensorflo ...

  7. SaToken学习笔记-04

    SaToken学习笔记-04 如果有问题,请点击:传送门 角色认证 在sa-token中,角色和权限可以独立验证 // 当前账号是否含有指定角色标识, 返回true或false StpUtil.has ...

  8. Redis:学习笔记-04

    Redis:学习笔记-04 该部分内容,参考了 bilibili 上讲解 Redis 中,观看数最多的课程 Redis最新超详细版教程通俗易懂,来自 UP主 遇见狂神说 10. Redis主从复制 1 ...

  9. Python scikit-learn机器学习工具包学习笔记

    feature_selection模块 Univariate feature selection:单变量的特征选择 单变量特征选择的原理是分别单独的计算每个变量的某个统计指标,根据该指标来判断哪些指标 ...

随机推荐

  1. getContextPath、getServletPath、getRequestURI的区别

    假定你的web application 项目名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下 ...

  2. jsp 和jspf

    http://www.cnblogs.com/liaojie970/p/5035077.html

  3. JS-怎么得到局部域中的数据

    1,使用全局变量 var str = '';function fn1(){    var a = '大鸡腿~';    str = a;} 2,使用一个局部函数 function fn2(){     ...

  4. BufferedOutputStream的学习

    今天写了一下一段代码,结果打开文件却发现要写入文件的内容不仅没写入,原来的内容也消失了,而控制台却显示原文件的内容都被读取出来了,代码如下: FileInputStream fileInputStre ...

  5. String reorder

    本问题出自:微软2014实习生及秋令营技术类职位在线测试 (Microsoft Online Test for Core Technical Positions) Description For th ...

  6. 用scala实现一个sql执行引擎-(下)

    执行 上一篇讲述了如何通过scala提供的内置DSL支持,实现一个可以解析sql的解析器,这篇讲如何拿到了解析结果-AST以后,如何在数据上进行操作,得到我们想要的结果.之前说到,为什么选择scala ...

  7. UIPageControl页控制器

    一.基本知识 #import "ViewController.h"@interface ViewController ()<UIScrollViewDelegate>{ ...

  8. Linux 配置主机名

    方法 1:临时配置 [root@NING ~]# hostname NING CRT重新连接即可,服务器重启失效. 方法 2:永久配置 步骤1:包含了主机最基本的网络信息,用于系统启动. [root@ ...

  9. Excel表3级数据整理工具

    前言 做专题经常会遇到做数据级联的需求,大部分需求都长一个模样.销售给你一个excel表,然后你做一个省市经销商的级联.不知道以前大家是怎么样做的,我之前是把excel复制到sublime中,然后使用 ...

  10. Wordnet的一些简单使用

    转载请说明出处:http://www.cnblogs.com/KingKou/p/4121373.html 1.简介 Wordnet是一个由普林斯顿大学认识科学实验室在心理学教授乔治·A·米勒的指导下 ...