题目描述

小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了。幸运的是,他们可以通过传纸条来进行交流。纸条要经由许多同学传到对方手里,小渊坐在矩阵的左上角,坐标(1,1),小轩坐在矩阵的右下角,坐标(m,n)。从小渊传到小轩的纸条只可以向下或者向右传递,从小轩传给小渊的纸条只可以向上或者向左传递。

在活动进行中,小渊希望给小轩传递一张纸条,同时希望小轩给他回复。班里每个同学都可以帮他们传递,但只会帮他们一次,也就是说如果此人在小渊递给小轩纸条的时候帮忙,那么在小轩递给小渊的时候就不会再帮忙。反之亦然。

还有一件事情需要注意,全班每个同学愿意帮忙的好感度有高有低(注意:小渊和小轩的好心程度没有定义,输入时用0表示),可以用一个0-100的自然数来表示,数越大表示越好心。小渊和小轩希望尽可能找好心程度高的同学来帮忙传纸条,即找到来回两条传递路径,使得这两条路径上同学的好心程度只和最大。现在,请你帮助小渊和小轩找到这样的两条路径。

输入输出格式

输入格式:

输入文件message.in的第一行有2个用空格隔开的整数m和n,表示班里有m行n列(1<=m,n<=50)。

接下来的m行是一个m*n的矩阵,矩阵中第i行j列的整数表示坐在第i行j列的学生的好心程度。每行的n个整数之间用空格隔开。

输出格式:

输出文件message.out共一行,包含一个整数,表示来回两条路上参与传递纸条的学生的好心程度之和的最大值。

输入输出样例

输入样例#1:

3 3
0 3 9
2 8 5
5 7 0
输出样例#1:

34

说明

【限制】

30%的数据满足:1<=m,n<=10

100%的数据满足:1<=m,n<=50

NOIP 2008提高组第三题

问题等价于从左上角连传两张纸条到右下角。

DP。四维表示两张纸条各自传到的坐标。也可以优化到三维(最后一维坐标计算得出)

 /*
WA 1:DP循环中i,j都设成了1 to n,没有考虑k的限制,导致访问地址溢出。
然而并没有RE,比较奇怪。直接开大数组后可以过,也比较奇怪
AC
*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const int mxn=;
int f[mxn<<][mxn][mxn];//[k]步 [a]横坐标 [b]横坐标
int mp[mxn][mxn];
int n,m;
int main(){
scanf("%d%d",&n,&m);
int i,j;
for(i=;i<=n;i++)
for(j=;j<=m;j++){
scanf("%d",&mp[i][j]);
}
int k;
for(k=;k<=n+m;k++){
for(i=;i<=n;i++){
if(k<i)continue;
for(j=;j<=n;j++){
if(k<j)continue;
if(i==j && k!=m+n)continue;
f[k][i][j]=max(f[k][i][j],f[k-][i-][j-]);
f[k][i][j]=max(f[k][i][j],f[k-][i][j]);
f[k][i][j]=max(f[k][i][j],f[k-][i-][j]);
f[k][i][j]=max(f[k][i][j],f[k-][i][j-]);
f[k][i][j]+=mp[i][k-i]+mp[j][k-j];
}
}
}
printf("%d\n",f[m+n][n][n]);
return ;
}

[NOIP2008] 提高组 洛谷P1006 传纸条的更多相关文章

  1. 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏

    P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...

  2. 洛谷 P1006 传纸条 题解

    P1006 传纸条 题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法 ...

  3. 洛谷 P1006 传纸条

    题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...

  4. 洛谷 P1006 传纸条 多维DP

    传纸条详解: 蒟蒻最近接到了练习DP的通知,于是跑来试炼场看看:发现有点难(毕竟是蒟蒻吗)便去翻了翻题解,可怎么都看不懂.为什么呢?蒟蒻发现题解里都非常详细的讲了转移方程,讲了降维优化,但这题新颖之处 ...

  5. 洛谷p1006 传纸条 三维解法

    原题目如下 原地址https://www.luogu.com.cn/problem/P1006 题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做 ...

  6. 【动态规划】洛谷P1006传纸条

    题目描述: 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的 ...

  7. Codevs 1169 == 洛谷 P1006 传纸条

    ---恢复内容开始--- 1169 传纸条 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 小渊和小轩是好朋友也是同班同学,他 ...

  8. [NOIP2008] 提高组 洛谷P1125 笨小猴

    题目描述 笨小猴的词汇量很小,所以每次做英语选择题的时候都很头疼.但是他找到了一种方法,经试验证明,用这种方法去选择选项的时候选对的几率非常大! 这种方法的具体描述如下:假设maxn是单词中出现次数最 ...

  9. 洛谷P1006 传纸条 (棋盘dp)

    好气,在洛谷上交就过了,在caioj上交就只有40分 之前在51nod做过这道题了. https://blog.csdn.net/qq_34416123/article/details/8180902 ...

随机推荐

  1. MongoDB学习(四)客户端工具备份数据库

    在上一篇MongoDB学习(三)中讲解了如何在服务器端进行数据的导入导出与备份恢复,本篇介绍下如何利用客户端工具来进行远程服务器的数据备份到本地. 以客户端工具MongoVUE为例来进行讲解: 1.首 ...

  2. [原创]Gerrit中文乱码问题解决方案分享

    应开发同事的要求,部署了Gitlab+Gerrit+Jenkins的持续集成环境. 但是发现了一个问题,Gerrit登陆后有中文乱码出现. 具体情况如下: (1)Git代码中的中文乱码处理: 为妥善解 ...

  3. 如何免费访问Google?

    访问Google方法(以Mac为例) 1.替换hosts文件中的内容,文件链接如下: https://github.com/racaljk/hosts 2.下载Google浏览器,链接如下: http ...

  4. [转]curl_multi 实现准多进程发请求

    FROM : http://blog.sina.com.cn/s/blog_515b90d00100jtnv.html curl_multi函数族:curl_multi_closecurl_multi ...

  5. js运动框架 step by step

    开启setInterval定时器之前,请先清除之前的定时器 window.onload = function() { var btn = document.getElementById('btn'); ...

  6. 数据库SQL优化大总结之 百万级数据库优化方案(转)

    1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索 ...

  7. 用 eric6 与 PyQt5 实现python的极速GUI编程(系列03)---- Drawing(绘图)(1)-- 绘写文字

    [概览] 本文实现如下的程序:(在窗体中绘画出文字) 主要步骤如下: 1.在eric6中新建项目,新建窗体 2.(自动打开)进入PyQt5 Desinger,编辑图形界面,保存 3.回到eric 6, ...

  8. css margin 参数

    margin 参数 margin: (1)一个参数值,将用于全部的四边. (2)两个参数值,第一个用于上-下,第二个用于左-右. (3)三个参数值,第一个用于上,第二个用于左-右,第三个用于下. (4 ...

  9. [CareerCup] 12.3 Test Move Method in a Chess Game 测试象棋游戏中的移动方法

    12.3 We have the following method used in a chess game: boolean canMoveTo( int x, int y). This metho ...

  10. 【WEB API项目实战干货系列】- API登录与身份验证(三)

    上一篇: [WEB API项目实战干货系列]- 接口文档与在线测试(二) 这篇我们主要来介绍我们如何在API项目中完成API的登录及身份认证. 所以这篇会分为两部分, 登录API, API身份验证. ...