hdu1695 莫比乌斯反演
莫比乌斯反演:可参考论文:《POI XIV Stage.1 《Queries》解题报告By Kwc-Oliver》
求莫比乌斯函数mu[i]:(kuangbin模板)
http://www.cnblogs.com/kuangbin/archive/2013/08/21/3273440.html
void Moblus()
{
memset(check,false,sizeof(check));
mu[] = ;
int tot = ;
for(int i = ; i <= MMX; i++)
{
if( !check[i] )
{
prime[tot++] = i;
mu[i] = -;
}
for(int j = ; j < tot; j++)
{
if(i * prime[j] > MMX) break;
check[i * prime[j]] = true;
if( i % prime[j] == )
{
mu[i * prime[j]] = ;
break;
}
else
{
mu[i * prime[j]] = -mu[i];
}
}
}
}
本题题意:0<=x<=b,0<=y<=d,求满足gcd(x,y)=k这样的数对(x,y)的数量 ((x,y)和(y,x)算一个)
参考论文提供的公式(自己推不粗来T^T),可以得出:

注意:这里得到的Ans是有序的,即(x,y)和(y,x)算两个
所以本题最终的结果应该是Result=G(b,d)-(G(b,b)/2)
画个图就能看出来:

#include <iostream>
#include <cstring>
#include <cmath>
using namespace std;
#define LL long long
#define MMX 1000010
#define mian main
int mu[MMX];
LL n;
bool check[MMX];
int prime[MMX]; void Moblus()
{
memset(check,false,sizeof(check));
mu[] = ;
int tot = ;
for(int i = ; i <= MMX; i++)
{
if( !check[i] )
{
prime[tot++] = i;
mu[i] = -;
}
for(int j = ; j < tot; j++)
{
if(i * prime[j] > MMX) break;
check[i * prime[j]] = true;
if( i % prime[j] == )
{
mu[i * prime[j]] = ;
break;
}
else
{
mu[i * prime[j]] = -mu[i];
}
}
}
} int mian()
{
int T;
cin>>T;
Moblus();
for (int zy=; zy<=T; zy++)
{
int a,b,c,d,k;
cin>>a>>b>>c>>d>>k;
if(k == )
{
cout<<"Case "<<zy<<": 0"<<endl;
}
else
{
if (b>d) swap(b,d); //assume b<d
b=b/k;
d=d/k; LL ans1 = ;
for(int i = ; i <= b; i++) //G(b,d)
ans1 += (LL)mu[i]*(b/i)*(d/i);
LL ans2 = ;
for(int i = ; i <= b; i++) //G(b,b)
ans2 += (LL)mu[i]*(b/i)*(b/i);
ans1 -= ans2/; cout<<"Case "<<zy<<": "<<ans1<<endl;
}
}
}
PS:还有用容斥原理做的,表示看不懂orz
http://blog.csdn.net/yang_7_46/article/details/9072533
http://blog.csdn.net/shiren_Bod/article/details/5787722
hdu1695 莫比乌斯反演的更多相关文章
- HDU-1695 莫比乌斯反演
这里学习一下莫比乌斯反演 翻看了很多书,发现莫比乌斯反演,准确来说不是一种固有的公式,而是一种法则. 我们定义F(n),为f(d)的和函数,而定义f(n)为某儿算术函数. 反演公式1:反演n的因子时 ...
- hdu1695(莫比乌斯反演模板)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意: 对于 a, b, c, d, k . 有 x 属于 [a, b], y 属于 [c, ...
- hdu1695(莫比乌斯反演+容斥)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题目是求 在区间[a,b]选一个数x,区间[c,d]选一个数y,求满足gcd(x,y) = k ...
- hdu1695莫比乌斯反演模板题
hdu1695 求1<=i<=n&&1<=j<=m,gcd(i,j)=k的(i,j)的对数 最后的结果f(k)=Σ(1<=x<=n/k)mu[x]* ...
- 【HDU1695】GCD(莫比乌斯反演)
[HDU1695]GCD(莫比乌斯反演) 题面 题目大意 求\(a<=x<=b,c<=y<=d\) 且\(gcd(x,y)=k\)的无序数对的个数 其中,你可以假定\(a=c= ...
- hdu1695(容斥 or 莫比乌斯反演)
刚开始看题,想了一会想到了一种容斥的做法.复杂度O( n(3/2) )但是因为题目上说有3000组测试数据,然后吓尿.完全不敢写. 然后想别的方法. 唉,最近精神有点问题,昨天从打完bc开始想到1点多 ...
- hdu1695 GCD(莫比乌斯反演)
题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...
- HDU1695 GCD(莫比乌斯反演)
传送门 看了1个多小时,终于懂了一点了 题目大意:给n,m,k.求gcd(x,y) = k(1<=x<=n, 1<=y<=m)的个数 思路:令F(i)表示i|gcd(x,y)的 ...
- hdu1695(莫比乌斯反演)
传送门:GCD 题意:求[1,n],[1,m]gcd为k的对数. 分析:莫比乌斯入反演门题,gcd(x,y)==k等价于gcd(x/k,y/k)==1,求出[1,n][1,m]互质的对数,在减去[1, ...
随机推荐
- linux下删除文件名乱码文件
linux下通过rm命令来删除文件,但是如果要删除文件名乱码的文件,就不能直接使用rm命令了,因为压根就无法输出文件名来.不过借助find命令可以实现对其删除.在linux下对于每个文件都一个对应的不 ...
- Eclipse c++头文件问题(未完)
http://stackoverflow.com/questions/7905025/string-could-not-resolved-error-in-eclipse-for-c-eclipse- ...
- 【java基础】 如何导入外部jar包
转:from http://www.zhihu.com/question/20311561 有两种常用的方法. 1. 以外部包(External Archives)的形式导入. 在默认位于 Eclip ...
- homepage左边的导航菜单怎么做的?
homepage左边的导航菜单怎么做的? 为啥只在homepage页面写了一个div 然后用一个homepage.js来填充这个div 然后用一个外部容器ID作为homepage.js的参数
- 我们为什么要使用NodeJS
科普文一则,说说我对NodeJS(一种服务端JavaScript实现)的一些认识,以及我为什么会向后端工程师推荐NodeJS. "Node.js 是服务器端的 JavaScript 运行环境 ...
- trac项目管理平台
本文来自百科,由于是非Python开发者,所以仅为了拓宽知识面 1软件介绍 Trac是一个为软件开发项目需要而集成了Wiki和问题跟踪管理系统的应用平台,是一个开源软件应用.Trac以简单的方式建立了 ...
- usb驱动开发9之设备描述符
前面分析了usb的四大描述符之端点描述符,接口描述符(每一个接口对应一个功能,与之配备相应驱动),配置描述符,最后分析设备如何包括这些描述符.首先记住,在usb的世界里,设备大于配置,配置大于接口,接 ...
- 关于Mvvm的一些深入理解
在CodePlex上找到MvvmToolkit,觉得文档写得非常好,具体,全面和深入,配合源代码来看,会对Mvvm有一个深入的理解,原文链接如下 http://www.galasoft.ch/mvvm ...
- 20135316王剑桥 linux第十周课实验笔记
关于who 功能说明:显示目前登入系统的用户信息. 语 法:who [-Himqsw][--help][--version][am i][记录文件] 补充说明:执行这项指令可得知目前有那些用户登入系统 ...
- IOS开发之——意见反馈UITextView的使用+不能输入字符输入
@interface DMFeedbackViewController ()<UITextViewDelegate,UIAlertViewDelegate>@property (nonat ...