poj 3734 矩阵快速幂+YY
题目原意:N个方块排成一列,每个方块可涂成红、蓝、绿、黄。问红方块和绿方块都是偶数的方案的个数。
sol:找规律列递推式+矩阵快速幂
设已经染完了i个方块将要染第i+1个方块。
a[i]=1-i方块中,红、绿方块数量都是偶数的方案数
b[i]=1-i方块中,红、绿方块数量一个是偶数一个是奇数的方案数(红even绿odd 或 红odd绿even)
c[i]=1-i方块中,红、绿方块数量都是奇数的方案数
可以得出递推公式:
a[i+1]=2*a[i]+b[i]
b[i+1]=2*a[i]+2*b[i]+2*c[i]
c[i+1]=b[i]+2*c[i]
如何和矩阵结合起来呢?不妨把公式这样写一遍,
a[i+1]=2*a[i]+1*b[i]+0*c[i]
b[i+1]=2*a[i]+2*b[i]+2*c[i]
c[i+1]=0*a[i]+1*b[i]+2*c[i]
然后可以YY出一个矩阵:

因此,

这样就可以用矩阵快速幂求解了。
#include "iostream"
#include "vector"
#include "cstring"
using namespace std; typedef unsigned long int ULL;
typedef vector<ULL> vec;
typedef vector<vec> mat;
const ULL P=;
int n,m; mat mul(mat &A,mat &B) //return A*B
{
mat C(A.size(),vec(B[].size()));
for (int i=;i<(int)A.size();i++)
{
for (int k=;k<(int)B.size();k++)
{
for (int j=;j<(int)B[].size();j++)
{
C[i][j]=(C[i][j]+A[i][k]*B[k][j])%P;
}
}
}
return C;
} mat m_pow(mat A,int m) //return A^m
{
mat B(A.size(),vec(A.size()));
for (int i=;i<(int)A.size();i++)
B[i][i]=;
while (m>)
{
if (m&) B=mul(B,A);
A=mul(A,A);
m>>=;
}
return B;
} int main()
{
int T,N;
cin>>T;
while (T--)
{
cin>>N;
mat A(,vec());
A[][]=; A[][]=; A[][]=;
A[][]=; A[][]=; A[][]=;
A[][]=; A[][]=; A[][]=; A=m_pow(A,N); cout<<A[][]<<endl;
}
return ;
} /*
int main()
{
int T;
cin>>T;
while (T--)
{
cin>>n>>m;
mat A(n,vec(n)); for (int i=0;i<n;i++)
for (int j=0;j<n;j++)
cin>>A[i][j]; A=m_pow(A,m); ULL ans=0;
for (int i=0;i<n;i++)
{
ans+=A[i][i];
ans=ans%P;
}
cout<<ans<<endl;
}
return 0;
}
*/
poj 3734 矩阵快速幂+YY的更多相关文章
- poj 3233 矩阵快速幂+YY
题意:给你矩阵A,求S=A+A^1+A^2+...+A^n sol:直接把每一项解出来显然是不行的,也没必要. 我们可以YY一个矩阵: 其中1表示单位矩阵 然后容易得到: 可以看出这个分块矩阵的左下角 ...
- Blocks(POJ 3734 矩阵快速幂)
Blocks Input The first line of the input contains an integer T(1≤T≤100), the number of test cases. E ...
- poj 3233 矩阵快速幂
地址 http://poj.org/problem?id=3233 大意是n维数组 最多k次方 结果模m的相加和是多少 Given a n × n matrix A and a positive i ...
- poj 3734 Blocks 快速幂+费马小定理+组合数学
题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友 ...
- POJ 3070 矩阵快速幂解决fib问题
矩阵快速幂:http://www.cnblogs.com/atmacmer/p/5184736.html 题目链接 #include<iostream> #include<cstdi ...
- 解题报告:poj 3070 - 矩阵快速幂简单应用
2017-09-13 19:22:01 writer:pprp 题意很简单,就是通过矩阵快速幂进行运算,得到斐波那契数列靠后的位数 . 这是原理,实现部分就是矩阵的快速幂,也就是二分来做 矩阵快速幂可 ...
- POJ 3070 矩阵快速幂
题意:求菲波那切数列的第n项. 分析:矩阵快速幂. 右边的矩阵为a0 ,a1,,, 然后求乘一次,就进一位,求第n项,就是矩阵的n次方后,再乘以b矩阵后的第一行的第一列. #include <c ...
- POJ 3233 矩阵快速幂&二分
题意: 给你一个n*n的矩阵 让你求S: 思路: 只知道矩阵快速幂 然后nlogn递推是会TLE的. 所以呢 要把那个n换成log 那这个怎么搞呢 二分! 当k为偶数时: 当k为奇数时: 就按照这么搞 ...
- poj 3744 矩阵快速幂+概率dp
题目大意: 输入n,代表一位童子兵要穿过一条路,路上有些地方放着n个地雷(1<=n<=10).再输入p,代表这位童子兵非常好玩,走路一蹦一跳的.每次他在 i 位置有 p 的概率走一步到 i ...
随机推荐
- Javascript的变量与delete操作符
原文:http://charlee.li/javascript-variables-and-delete-operator.html 刚刚看到一篇好文(原文链接), 对Javascript中的dele ...
- 你会在C#的类库中添加web service引用吗?
本文并不是什么高深的文章,只是VS2008应用中的一小部分,但小部分你不一定会,要不你试试: 本人对于分布式开发应用的并不多,这次正好有一个项目要应用web service,我的开发环境是vs2008 ...
- 什么是json
http://www.ruanyifeng.com/blog/2009/05/data_types_and_json.html http://edu.51cto.com/lesson/id-71123 ...
- MySQL基础 - 注意事项
AND比OR优先级高,故在同时使用AND和OR进行查找时记得加上小括号,当同时存在多个条件时统一加上括号是个好习惯. NULL不参与搜索,即使使用LIKE '%'也匹配不到值为NULL的记录. LIK ...
- StringBuffer类 和 StringBuilder类
上一篇中讲解了String类的用法.那么String有什么特点呢? 字符串特点:字符串是常量,其值在创建后就不能被修改.字符串的内容一旦发生变化,就会创建一个新的对象. 代码验证字符串特点: publ ...
- ActionBar在Android2.x的实现,类似新版微信界面。
ActionBar完美兼容Android4.x的机型,虽然现在Android2.x的系统越来越少,还有有一部分人使用的仍是2.x的系统,所以我们还得考虑着兼容性问题. 对比图: Test例子与微信的对 ...
- Fork一个仓库
Fork 是对一个仓库的克隆.克隆一个仓库允许你自由试验各种改变,而不影响原始的项目. 一般来说,forks 被用于去更改别人的项目(贡献代码给已经开源的项目)或者使用别人的项目作为你自己想法的初始开 ...
- UIAccessibilityElement
UIaccessibilityElement类封装的项目信息对一些特殊的人可见,默认情况下是不可访问的.例如,一个图标或文字图像不会自动访问,因为它没有继承的UIView(或UIControl).一个 ...
- rem详解及使用方法
好像有一段时间没有写博客了……今天刚好总结一下rem的使用方法 首先,先说一个常识,浏览器的默认字体高都是16px.步入正题-----〉 兼容性: 目前,IE9+,Firefox.Chrome.Saf ...
- SpringMVC重定向视图RedirectView小分析
目录 前言 RedirectView介绍 实例讲解 总结 前言 SpringMVC是目前主流的Web MVC框架之一. 如果有同学对它不熟悉,那么请参考它的入门blog:http://www.cnbl ...