poj 3734 矩阵快速幂+YY
题目原意:N个方块排成一列,每个方块可涂成红、蓝、绿、黄。问红方块和绿方块都是偶数的方案的个数。
sol:找规律列递推式+矩阵快速幂
设已经染完了i个方块将要染第i+1个方块。
a[i]=1-i方块中,红、绿方块数量都是偶数的方案数
b[i]=1-i方块中,红、绿方块数量一个是偶数一个是奇数的方案数(红even绿odd 或 红odd绿even)
c[i]=1-i方块中,红、绿方块数量都是奇数的方案数
可以得出递推公式:
a[i+1]=2*a[i]+b[i]
b[i+1]=2*a[i]+2*b[i]+2*c[i]
c[i+1]=b[i]+2*c[i]
如何和矩阵结合起来呢?不妨把公式这样写一遍,
a[i+1]=2*a[i]+1*b[i]+0*c[i]
b[i+1]=2*a[i]+2*b[i]+2*c[i]
c[i+1]=0*a[i]+1*b[i]+2*c[i]
然后可以YY出一个矩阵:

因此,

这样就可以用矩阵快速幂求解了。
#include "iostream"
#include "vector"
#include "cstring"
using namespace std; typedef unsigned long int ULL;
typedef vector<ULL> vec;
typedef vector<vec> mat;
const ULL P=;
int n,m; mat mul(mat &A,mat &B) //return A*B
{
mat C(A.size(),vec(B[].size()));
for (int i=;i<(int)A.size();i++)
{
for (int k=;k<(int)B.size();k++)
{
for (int j=;j<(int)B[].size();j++)
{
C[i][j]=(C[i][j]+A[i][k]*B[k][j])%P;
}
}
}
return C;
} mat m_pow(mat A,int m) //return A^m
{
mat B(A.size(),vec(A.size()));
for (int i=;i<(int)A.size();i++)
B[i][i]=;
while (m>)
{
if (m&) B=mul(B,A);
A=mul(A,A);
m>>=;
}
return B;
} int main()
{
int T,N;
cin>>T;
while (T--)
{
cin>>N;
mat A(,vec());
A[][]=; A[][]=; A[][]=;
A[][]=; A[][]=; A[][]=;
A[][]=; A[][]=; A[][]=; A=m_pow(A,N); cout<<A[][]<<endl;
}
return ;
} /*
int main()
{
int T;
cin>>T;
while (T--)
{
cin>>n>>m;
mat A(n,vec(n)); for (int i=0;i<n;i++)
for (int j=0;j<n;j++)
cin>>A[i][j]; A=m_pow(A,m); ULL ans=0;
for (int i=0;i<n;i++)
{
ans+=A[i][i];
ans=ans%P;
}
cout<<ans<<endl;
}
return 0;
}
*/
poj 3734 矩阵快速幂+YY的更多相关文章
- poj 3233 矩阵快速幂+YY
题意:给你矩阵A,求S=A+A^1+A^2+...+A^n sol:直接把每一项解出来显然是不行的,也没必要. 我们可以YY一个矩阵: 其中1表示单位矩阵 然后容易得到: 可以看出这个分块矩阵的左下角 ...
- Blocks(POJ 3734 矩阵快速幂)
Blocks Input The first line of the input contains an integer T(1≤T≤100), the number of test cases. E ...
- poj 3233 矩阵快速幂
地址 http://poj.org/problem?id=3233 大意是n维数组 最多k次方 结果模m的相加和是多少 Given a n × n matrix A and a positive i ...
- poj 3734 Blocks 快速幂+费马小定理+组合数学
题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友 ...
- POJ 3070 矩阵快速幂解决fib问题
矩阵快速幂:http://www.cnblogs.com/atmacmer/p/5184736.html 题目链接 #include<iostream> #include<cstdi ...
- 解题报告:poj 3070 - 矩阵快速幂简单应用
2017-09-13 19:22:01 writer:pprp 题意很简单,就是通过矩阵快速幂进行运算,得到斐波那契数列靠后的位数 . 这是原理,实现部分就是矩阵的快速幂,也就是二分来做 矩阵快速幂可 ...
- POJ 3070 矩阵快速幂
题意:求菲波那切数列的第n项. 分析:矩阵快速幂. 右边的矩阵为a0 ,a1,,, 然后求乘一次,就进一位,求第n项,就是矩阵的n次方后,再乘以b矩阵后的第一行的第一列. #include <c ...
- POJ 3233 矩阵快速幂&二分
题意: 给你一个n*n的矩阵 让你求S: 思路: 只知道矩阵快速幂 然后nlogn递推是会TLE的. 所以呢 要把那个n换成log 那这个怎么搞呢 二分! 当k为偶数时: 当k为奇数时: 就按照这么搞 ...
- poj 3744 矩阵快速幂+概率dp
题目大意: 输入n,代表一位童子兵要穿过一条路,路上有些地方放着n个地雷(1<=n<=10).再输入p,代表这位童子兵非常好玩,走路一蹦一跳的.每次他在 i 位置有 p 的概率走一步到 i ...
随机推荐
- Unity开发之NGUI系列
Unity插件收集 在Unity开发过程中会收集一些插件,收集这些插件的目的并不是我喜欢在开发中使用插件,而是本着喜欢的态度去收集的,就像我喜欢收集模型一样: 还有一点就是通过了解插件能让我知道Uni ...
- document.write和innerHTML的区别
document.write是直接写入到页面的内容流,如果在写之前没有调用document.open, 浏览器会自动调用open.每次写完关闭之后重新调用该函数,会导致页面被重写. innerHTML ...
- java9-9 匿名内部类
1. 匿名内部类 就是内部类的简化写法. 前提:存在一个类或者接口 这里的类可以是具体类也可以是抽象类. 格式: new 类名或者接口名(){ 重写方法; } new Xxx()是创建了一个对象,而抽 ...
- 伪造Http头拿flag
<?php function GetIP(){ if(!empty($_SERVER["HTTP_CLIENT_IP"])) $cip = $_SERVER["HT ...
- 泛型类型的协变(covariant)和逆变
官网:http://msdn.microsoft.com/zh-cn/library/dd799517.aspx 原文链接:http://book.51cto.com/art/201112/30857 ...
- PHP通用函数 - 日期生成时间轴
/** * 时间轴函数, Unix 时间戳 * @param int $time 时间 */ function TranTime($time) { //$time = strtotime($time) ...
- cannot change version web module 3.0
eclipse如何修改dynamic web module version 由于从SVN down下来的工程java及tomcat 版本比本地高,导致工程不能编译,报以下错误. 1.Java comp ...
- getLovParameter
else if (pageContext.isLovEvent()) { StHelper.handleLovEvent(pageContext, webBean); } public static ...
- Quartz.net打造信息抽取器
由于最近的一个项目需要定时抽取特定XML信息,然后保存到数据库,最后通过WebApi把手机端要使用的方法给暴露出来,所以去研究了一下Quartz.net.由于项目很小,我没用到Autofac,Repo ...
- 第七章 new的三步曲
这章是本系列文章的重点,这章揭示了js对象的真正本质 看下面的事例 var a = new b(); 等价于 ①var a={}; ②a.__proto__=b.prototype; ③b.call( ...