Time Limit: 3000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u

Submit Status

Description

Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more and more interesting things about GCD. Today He comes up with Range Greatest Common Divisor Query (RGCDQ). What’s RGCDQ? Please let me explain it to you gradually. For a positive integer x, F(x) indicates the number of kind of prime factor of x. For example F(2)=1. F(10)=2, because 10=2*5. F(12)=2, because 12=2*2*3, there are two kinds of prime factor. For each query, we will get an interval [L, R], Hdu wants to know \max GCD(F(i),F(j)) (L\leq i<j\leq R)
 

Input

There are multiple queries. In the first line of the input file there is an integer T indicates the number of queries. 
In the next T lines, each line contains L, R which is mentioned above.

All input items are integers. 
1<= T <= 1000000 
2<=L < R<=1000000 

 

Output

For each query,output the answer in a single line. 
See the sample for more details. 
 

Sample Input

2
2 3
3 5
 

Sample Output

1
1
 

Source

2015 Multi-University Training Contest 3
题意:如题,x是一个正整数,f(x)表示x的素因子种类数, F(2)=1. F(10)=2,因为10=2*5. F(12)=2, 因为12=2*2*3。现在给定两个数l和r,问在l和r这个区间内任取两个数i,j中gcd(f(i),f(j))的最大值。给定t组数据,每组给定l和r,输出结果。
题解:先用素筛法打表筛选出每个数的素因子种类数,我们发现2*3*5*7*11*13*17=510510,注意虽然这个数小于10的6次方,但是已经足够证明7已经是最大值了,因为这7个素数是素数中最小的7个。f(i)只考虑i的素因子种类个数,不考虑这个素因子是否和j的素因子是同一个。举个例子,比如i=2*3*5*7*11*13*17=510510,种类数为7,j=2*3*5*7*11*13*19=570570,种类数也为7,所以如果lr区间中包含ij那么输出7。事实上,510510和570570是最小的两个包含7种素因子的数。说到这里就可以写了,涉及到一点递推的知识,用sum[maxn][8]存储,sum[i][j]表示对于数i来说,2到i中所有数的素因子种类数为j的数的个数。i从7遍历到1,如果sum[r][i]-sum[l-1][i]>=2,说明该区间内存在至少两个数的素因子种类数为i,break输出即可,因为我们要的是最大值。注意初始的时候要把ans定义为1,因为可能所有数的素因子种类数都不相等比如6,7这组数据,f(6)=2,f(7)=1,gcd(2,1)=1。输出1而不是0,虽然输出0也是能AC的但是不符合题意。
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=1e6+;
int num[maxn];
int sum[maxn][];
void getnum()
{
memset(num,,sizeof(num));
memset(sum,,sizeof(sum));
for(int i=;i<maxn;i++)
{
if(!num[i])
{
for(int j=i;j<maxn;j+=i)
num[j]++;
}
}
for(int i=;i<maxn;i++)
for(int x=;x<=;x++)
{
sum[i][x]=sum[i-][x];
if(num[i]==x)
sum[i][x]++;
}
}
int main()
{
getnum();
int t;
scanf("%d",&t);
while(t--)
{
int l,r,ans=;
scanf("%d%d",&l,&r);
for(int i=;i>=;i--)
{
if(sum[r][i]-sum[l-][i]>=)
{
ans=i;
break;
}
}
printf("%d\n",ans);
}
return ;
}

HDU 5317 RGCDQ (数论素筛)的更多相关文章

  1. hdu 5317 RGCDQ(前缀和)

    题目链接:hdu 5317 这题看数据量就知道需要先预处理,然后对每个询问都需要在 O(logn) 以下的复杂度求出,由数学规律可以推出 1 <= F(x) <= 7,所以对每组(L, R ...

  2. ACM学习历程—HDU 5317 RGCDQ (数论)

    Problem Description Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more an ...

  3. HDU 5317 RGCDQ(素数个数 多校2015啊)

    题目链接:pid=5317" target="_blank">http://acm.hdu.edu.cn/showproblem.php?pid=5317 Prob ...

  4. hdu 5317 RGCDQ (2015多校第三场第2题)素数打表+前缀和相减求后缀(DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5317 题意:F(x) 表示x的不同质因子的个数结果是求L,R区间中最大的gcd( F(i) , F(j ...

  5. 2015 Multi-University Training Contest 3 hdu 5317 RGCDQ

    RGCDQ Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  6. HDU 5317 RGCDQ

    题意:f(i)表示i的质因子个数,给l和r,问在这一区间内f(i)之间任意两个数最大的最大公倍数是多少. 解法:先用筛法筛素数,在这个过程中计算f(i),因为f(i)不会超过7,所以用一个二维数组统计 ...

  7. HDU 5317 RGCDQ (质数筛法,序列)

    题意:从1~1000,000的每个自然数质因子分解,不同因子的个数作为其f 值,比如12=2*2*3,则f(12)=2.将100万个数转成他们的f值后变成新的序列seq.接下来T个例子,每个例子一个询 ...

  8. 2015 HDU 多校联赛 5317 RGCDQ 筛法求解

    2015 HDU 多校联赛 5317 RGCDQ 筛法求解 题目  http://acm.hdu.edu.cn/showproblem.php? pid=5317 本题的数据量非常大,測试样例多.数据 ...

  9. hdu 5317 合数分解+预处理

    RGCDQ Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

随机推荐

  1. C++中使用array报错 requires compiler and library surpport for the ISO c++ 2011 standard

    #error This file requires compiler and library support for the \ISO C++ 2011 standard. This support ...

  2. SpringMVC 2.5.6 noMapping

    <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...

  3. Android 获取本地图片

    MainActivity.java public class RegisterActivity extends AppCompatActivity { private ImageView iv; @O ...

  4. 自定义cell的步骤(每个cell的高度不一样,每个cell里面显示的内容也不一样)

    1.新建一个继承自UITableViewCell的子类  2. 在initWithStyle:方法中进行子控件的初始化 1> 将有可能显示的所有子控件都添加到contentView中 2> ...

  5. pom.xml

    使用intelJ idea 导入maven包管理文件是,使用Import的方式导入,会自动导入pom.xml来导入包. pom.xml会指定父子关系. 例如,总模块的pom.xml中有一下内容: &l ...

  6. Codeforces Round #270 D C B A

    谈论最激烈的莫过于D题了! 看过的两种做法不得不ORZ,特别第二种,简直神一样!!!!! 1th:构造最小生成树. 我们提取所有的边出来按边排序,因为每次我们知道边的权值>0, 之后每次把边加入 ...

  7. ASP.NET MVC学习笔记-----ActionInvoker

    还是这张图: 当ControllerFactory生成Controller实例后,这时就需要使用ActionInvoker来选择调用一个合适的Action执行.ASP.NET MVC提供的基类Cont ...

  8. 关于webstorm的使用编码的问题

    在问storm中,保存的js文件他有编码的问题,所以会导致如果页面上的元素是js文件中赋值的话,那么出现在html中会是乱码的问题,那么这个时候,极度,非常,非常有可能是js的编码的方式问题了~~~~ ...

  9. 八大常见内排序java实现

    虽然排序算法烂大街了,但是哥依然用java实现了一遍,只为自己练练手,后面可以时不时的回头看看...仅此而已,各位可以提意见,莫喷!! 一.冒泡排序 基本思想:在要排序的一组数中,对当前还未排好序的范 ...

  10. thinkphp中page方法

    page方法也是模型的连贯操作方法之一,是完全为分页查询而诞生的一个人性化操作方法. 用法 我们在前面已经了解了关于limit方法用于分页查询的情况,而page方法则是更人性化的进行分页查询的方法,例 ...