Time Limit: 3000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u

Submit Status

Description

Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more and more interesting things about GCD. Today He comes up with Range Greatest Common Divisor Query (RGCDQ). What’s RGCDQ? Please let me explain it to you gradually. For a positive integer x, F(x) indicates the number of kind of prime factor of x. For example F(2)=1. F(10)=2, because 10=2*5. F(12)=2, because 12=2*2*3, there are two kinds of prime factor. For each query, we will get an interval [L, R], Hdu wants to know \max GCD(F(i),F(j)) (L\leq i<j\leq R)
 

Input

There are multiple queries. In the first line of the input file there is an integer T indicates the number of queries. 
In the next T lines, each line contains L, R which is mentioned above.

All input items are integers. 
1<= T <= 1000000 
2<=L < R<=1000000 

 

Output

For each query,output the answer in a single line. 
See the sample for more details. 
 

Sample Input

2
2 3
3 5
 

Sample Output

1
1
 

Source

2015 Multi-University Training Contest 3
题意:如题,x是一个正整数,f(x)表示x的素因子种类数, F(2)=1. F(10)=2,因为10=2*5. F(12)=2, 因为12=2*2*3。现在给定两个数l和r,问在l和r这个区间内任取两个数i,j中gcd(f(i),f(j))的最大值。给定t组数据,每组给定l和r,输出结果。
题解:先用素筛法打表筛选出每个数的素因子种类数,我们发现2*3*5*7*11*13*17=510510,注意虽然这个数小于10的6次方,但是已经足够证明7已经是最大值了,因为这7个素数是素数中最小的7个。f(i)只考虑i的素因子种类个数,不考虑这个素因子是否和j的素因子是同一个。举个例子,比如i=2*3*5*7*11*13*17=510510,种类数为7,j=2*3*5*7*11*13*19=570570,种类数也为7,所以如果lr区间中包含ij那么输出7。事实上,510510和570570是最小的两个包含7种素因子的数。说到这里就可以写了,涉及到一点递推的知识,用sum[maxn][8]存储,sum[i][j]表示对于数i来说,2到i中所有数的素因子种类数为j的数的个数。i从7遍历到1,如果sum[r][i]-sum[l-1][i]>=2,说明该区间内存在至少两个数的素因子种类数为i,break输出即可,因为我们要的是最大值。注意初始的时候要把ans定义为1,因为可能所有数的素因子种类数都不相等比如6,7这组数据,f(6)=2,f(7)=1,gcd(2,1)=1。输出1而不是0,虽然输出0也是能AC的但是不符合题意。
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=1e6+;
int num[maxn];
int sum[maxn][];
void getnum()
{
memset(num,,sizeof(num));
memset(sum,,sizeof(sum));
for(int i=;i<maxn;i++)
{
if(!num[i])
{
for(int j=i;j<maxn;j+=i)
num[j]++;
}
}
for(int i=;i<maxn;i++)
for(int x=;x<=;x++)
{
sum[i][x]=sum[i-][x];
if(num[i]==x)
sum[i][x]++;
}
}
int main()
{
getnum();
int t;
scanf("%d",&t);
while(t--)
{
int l,r,ans=;
scanf("%d%d",&l,&r);
for(int i=;i>=;i--)
{
if(sum[r][i]-sum[l-][i]>=)
{
ans=i;
break;
}
}
printf("%d\n",ans);
}
return ;
}

HDU 5317 RGCDQ (数论素筛)的更多相关文章

  1. hdu 5317 RGCDQ(前缀和)

    题目链接:hdu 5317 这题看数据量就知道需要先预处理,然后对每个询问都需要在 O(logn) 以下的复杂度求出,由数学规律可以推出 1 <= F(x) <= 7,所以对每组(L, R ...

  2. ACM学习历程—HDU 5317 RGCDQ (数论)

    Problem Description Mr. Hdu is interested in Greatest Common Divisor (GCD). He wants to find more an ...

  3. HDU 5317 RGCDQ(素数个数 多校2015啊)

    题目链接:pid=5317" target="_blank">http://acm.hdu.edu.cn/showproblem.php?pid=5317 Prob ...

  4. hdu 5317 RGCDQ (2015多校第三场第2题)素数打表+前缀和相减求后缀(DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5317 题意:F(x) 表示x的不同质因子的个数结果是求L,R区间中最大的gcd( F(i) , F(j ...

  5. 2015 Multi-University Training Contest 3 hdu 5317 RGCDQ

    RGCDQ Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  6. HDU 5317 RGCDQ

    题意:f(i)表示i的质因子个数,给l和r,问在这一区间内f(i)之间任意两个数最大的最大公倍数是多少. 解法:先用筛法筛素数,在这个过程中计算f(i),因为f(i)不会超过7,所以用一个二维数组统计 ...

  7. HDU 5317 RGCDQ (质数筛法,序列)

    题意:从1~1000,000的每个自然数质因子分解,不同因子的个数作为其f 值,比如12=2*2*3,则f(12)=2.将100万个数转成他们的f值后变成新的序列seq.接下来T个例子,每个例子一个询 ...

  8. 2015 HDU 多校联赛 5317 RGCDQ 筛法求解

    2015 HDU 多校联赛 5317 RGCDQ 筛法求解 题目  http://acm.hdu.edu.cn/showproblem.php? pid=5317 本题的数据量非常大,測试样例多.数据 ...

  9. hdu 5317 合数分解+预处理

    RGCDQ Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

随机推荐

  1. bzoj 3172 后缀数组|AC自动机

    后缀数组或者AC自动机都可以,模板题. /************************************************************** Problem: 3172 Us ...

  2. 决策树笔记:使用ID3算法

    决策树笔记:使用ID3算法 决策树笔记:使用ID3算法 机器学习 先说一个偶然的想法:同样的一堆节点构成的二叉树,平衡树和非平衡树的区别,可以认为是"是否按照重要度逐渐降低"的顺序 ...

  3. 换了XCode版本之后,iOS应用启动时不占满全屏,上下有黑边

    原因是没有Retina4对应的启动图片,解决方法很简单,就是把Retina4对应的图片给补上就只可以了

  4. UVALive 6523 Languages

    传送门 The Enterprise has encountered a planet that at one point had been inhabited. The only remnant f ...

  5. 五种开源协议的比较(BSD_Apache_GPL_LGPL_MIT)

    现今存在的开源协议很多,而经过Open Source Initiative组织通过批准的开源协议目前有58种(http://www.opensource.org/licenses/alphabetic ...

  6. ASP.NET MVC 3 loginUrl自动变成Account/Login,并且发生404错误的解决方法

    http://www.cnblogs.com/think8848/archive/2011/07/08/2100814.html ASP.NET MVC 3 loginUrl自动变成Account/L ...

  7. Matlab中的括号()[]{}

    Matlab中的括号()[]{} Matlab中经常会用到括号去引用某Array或者是cell的内容,但三者有什么具体区别呢?[ ] 中括号用来构建向量(Vectors)或者是矩阵(Matrices) ...

  8. eclipse-统计代码行数

    使用Eclipse可以方便的统计工程或文件的代码行数,方法如下: 1.点击要统计的项目或许文件夹,在菜单栏点击Search,然后点击File...  2.选中正则表达式(Regular express ...

  9. cf.VK CUP 2015.B.Mean Requests

    Mean Requests time limit per test 4 seconds memory limit per test 256 megabytes input standard input ...

  10. weblogic <BEA-000438>

    现在创建域并启动服务器, 或许会发现如下提示的错误信息:<Error> <Socket> <BEA-000438> <Unable to load perfo ...