将Best Time to Buy and Sell Stock的如下思路用到此题目

思路1:第i天买入,能赚到的最大利润是多少呢?就是i + 1 ~ n天中最大的股价减去第i天的。

思路2:第i天买出,能赚到的最大利润是多少呢?就是第i天的价格减去 0~ i-1天中最小的。

和前两道题比起来的话,这道题最难了,因为限制了交易次数。
解决问题的途径我想出来的是:既然最多只能完成两笔交易,而且交易之间没有重叠,那么就divide and conquer。
设i从0到n-1,那么针对每一个i,看看在prices的子序列[0,...,i][i,...,n-1]上分别取得的最大利润(第一题)即可。
这样初步一算,时间复杂度是O(n2)。

改进:
改进的方法就是动态规划了,那就是第一步扫描,先计算出子序列[0,...,i]中的最大利润,用一个数组保存下来,那么时间是O(n)。
第二步是逆向扫描,计算子序列[i,...,n-1]上的最大利润,这一步同时就能结合上一步的结果计算最终的最大利润了,这一步也是O(n)。
所以最后算法的复杂度就是O(n)的。

/*
解释:
首先,因为能买2次(第一次的卖可以和第二次的买在同一时间),但第二次的买不能在第一次的卖左边。
所以维护2个表,f1和f2,size都和prices一样大。
意义:
f1[i]表示 -- 截止到i下标为止,左边所做交易能够达到最大profit;[0,...,i]的利润
f2[i]表示 -- 截止到i下标为止,右边所做交易能够达到最大profit;[i,...,n-1]的利润
那么,对于f1 + f2,寻求最大即可。
*/

对于f1[i],求解过程中用price[i] 减去之前的最小值 和 f1[i-1]做比较,取最大值

动态规划转移方程 f1[i] = max(f1[i-1], price[i]- min)

对于f2[i],求解过程中用后面的最大值减去price[i]和f2[i+1]做比较,取最大值

动态规划转移方程 f2[i] = max(f2[i+1], max-price[i])

思路解释完毕,上code:

minX[i] 表示0 到 i 的最小值 的price

max[i] 表示i到n-1的最大值的price

 class Solution {
public:
int maxProfit(vector<int> &prices) {
if (prices.size() == )
return ; vector<int> f1(prices.size());
vector<int> f2(prices.size()); vector<int> minX(prices.size());
vector<int> maxX(prices.size()); minX[] = prices[];
for(int i = ; i< prices.size();i++ )
{
minX[i] = min(minX[i-], prices[i]);
} maxX[prices.size()-] = prices[prices.size()-];
for(int i = prices.size() -; i >=; i-- )
{
maxX[i] = max(maxX[i+], prices[i]);
} f1[] = ;
for(int i = ; i< prices.size();i++ )
{
f1[i] = max(f1[i-],prices[i]-minX[i]);
} f2[prices.size()-] = ;
for(int i = prices.size() -; i >=; i-- )
{
f2[i] = max(f2[i+],maxX[i]- prices[i]);
} int sum = ; for(int i = ; i< prices.size();i++ )
sum = max(sum, f1[i] + f2[i]); return sum; }
};

优化:可以对上述code稍微优化一下,maxX 和minX array 并不需要,只要保留一个变量mini和maxX即可,不过由于f1和f2 的存在,空间复杂度还是O(n)

 class Solution {
public:
int maxProfit(vector<int> &prices) {
if (prices.size() == )
return ; vector<int> f1(prices.size());
vector<int> f2(prices.size()); int mini = prices[];
f1[] = ;
for(int i = ; i< prices.size();i++ )
{
f1[i] = max(f1[i-],prices[i]-mini);
mini = min(mini, prices[i]);
} int maxi = prices[prices.size()-];
f2[prices.size()-] = ;
for(int i = prices.size() -; i >=; i-- )
{
f2[i] = max(f2[i+],maxi - prices[i]);
maxi = max(maxi, prices[i]);
} int sum = ; for(int i = ; i< prices.size();i++ )
sum = max(sum, f1[i] + f2[i]); return sum; }
};

[LeetCode] Best Time to Buy and Sell Stock III的更多相关文章

  1. LeetCode: Best Time to Buy and Sell Stock III 解题报告

    Best Time to Buy and Sell Stock IIIQuestion SolutionSay you have an array for which the ith element ...

  2. [LeetCode] Best Time to Buy and Sell Stock III 买股票的最佳时间之三

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  3. LeetCode: Best Time to Buy and Sell Stock III [123]

    [称号] Say you have an array for which the ith element is the price of a given stock on day i. Design ...

  4. [Leetcode] Best time to buy and sell stock iii 买卖股票的最佳时机

    Say you have an array for which the i th element is the price of a given stock on day i. Design an a ...

  5. [leetcode]Best Time to Buy and Sell Stock III @ Python

    原题地址:https://oj.leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/ 题意: Say you have an array ...

  6. leetcode -- Best Time to Buy and Sell Stock III TODO

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  7. LeetCode——Best Time to Buy and Sell Stock III

    Description: Say you have an array for which the ith element is the price of a given stock on day i. ...

  8. LeetCode——Best Time to Buy and Sell Stock III (股票买卖时机问题3)

    问题: Say you have an array for which the ith element is the price of a given stock on day i. Design a ...

  9. LeetCode OJ--Best Time to Buy and Sell Stock III

    http://oj.leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/ 这三道题,很好的进阶.1题简单处理,2题使用贪心,3题使用动态 ...

随机推荐

  1. RAS RC4 AES 加密 MD5

    这两者唯一的相同点是设计者中都包含了MIT的Ron Revist教授.RSA是公钥密码算法,优点:不用事先通过秘密信道传递密钥,可以用于数字签名.缺点:速度慢RC4是序列密码算法,优点:速度快,缺点: ...

  2. CSS 动画之十-图片+图片信息展示

    这个动画主要是运用了一些css3的特性,效果是展示一张商品图片,然后在商品图片的制定位置显示该商品的详细信息.效果在chrome浏览器中预览. <!DOCTYPE html> <ht ...

  3. Jenkins进阶系列之——10Publish Over SSH插件

    说明:这个插件可以通过ssh连接其他Linux机器 官方说明:Publish Over SSH 安装步骤: 系统管理→管理插件→可选插件→Artifact Uploaders→Publish Over ...

  4. Android requires compiler compliance level 5.0 or 6.0. Found '1.7' instead. Please use Android Tool

    重装操作系统后,要重新配置Android开发环境.配置成功后,添加原本项目时却出现了错误! Android requires compiler compliance level 5.0 or 6.0. ...

  5. 封印术:shadow dom

    置顶文章:<纯CSS打造银色MacBook Air(完整版)> 上一篇:<鼠标滚动插件smoovejs和wowjs> 作者主页:myvin 博主QQ:851399101(点击Q ...

  6. Express使用手记:核心入门

    入门简介 Express是基于nodejs的web开发框架.优点是易上手.高性能.扩展性强. 易上手:nodejs最初就是为了开发高性能web服务器而被设计出来的,然而相对底层的API会让不少新手望而 ...

  7. How to use VS2012 remote debug Windows Azure Cloud Services

    Background: Windows Azure Cloud Services 可以在本地调试,使用Visual Studio 2012 + 模拟器 Emulator.但是模拟器的工作状态和环境和真 ...

  8. [BZOJ 1295][SCOI2009]最长距离(SPFA+暴力)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1295 分析:很巧妙的一道spfa从搜索的角度是搜索在所有1中搜索删除哪T个1,对整个图询问,这 ...

  9. Mobile Web

    Silun来给大家介绍几个常见的移动浏览器标签~ 当当当~ <meta name="apple-mobile-web-app-capable" content="y ...

  10. 三维数组——与 宝玉QQ群讨论交流之二

    宝玉 12:27:35 这几天看了大部分大家交的作业,发现一个主要问题还是卡在对三维数组的理解上,之前把三维数组类比成三维空间可能会造成误导 宝玉 12:27:45 其实鞠老师解释的很好: 三维数组 ...