线程技术可以让我们的程序同时做多件事情,线程的工作模式有很多,常见的一种模式就是处理网站的并发,今天我来说说线程另一种很常见的模式,这个模式和前端里的ajax类似:浏览器一个主线程执行javascript,页面渲染等操作,当我们使用ajax向服务端发起请求,由于这个过程很慢,ajax的异步模式可以让我们无需一直等待服务端的响应,而在这个等待结果时间里做其他的事情,这个模式在线程技术力称之为Future模式。

  Future模式和我前面文章里说到的html5技术里的worker技术差不多,当我们一个程序执行流里某个操作特别耗时,我们可以另起一个线程专门执行这个繁琐耗时的任务,主线程则可以做其他的事情,下面是我自己找到的一个实现原生Future模式的代码,它主要参入者如下:

  TestMain.java:测试程序入口,主要是调用Client类,向Client发送请求;

  Client.java:返回Data对象,立即返回FutureData,并开启ClientThread线程装配RealData;

  Data.java:返回数据接口;

  FutureData.java:Future数据,构造快,但是是一个虚拟的数据,需要装配RealData;

  RealData.java:真实数据,其构造是比较慢的。

  详细代码如下:

Data接口:

package cn.com.xSharp.futurePattern.simple;

/**
* 数据接口
* @author 俊
*
*/
public interface Data {
public String getData();
}

RealData代码:

package cn.com.xSharp.futurePattern.simple;

/**
* RealData是最终使用的数据,它构造很慢,因此用sleep来模拟
* @author 俊
* @since 2016-06-21 21:37
*/
public class RealData implements Data { protected final String result; public RealData(String param) {
StringBuffer sb = new StringBuffer();
for (int i = 0;i < 10;i++){
sb.append(param);
try {
Thread.sleep(100);
} catch (Exception e) {
e.printStackTrace();
}
}
result = sb.toString();
} @Override
public String getData() {
return result;
} }

FutureData代码:

package cn.com.xSharp.futurePattern.simple;

public class FutureData implements Data {

	protected RealData realData = null;// FutureData对RealData的包装
protected boolean isReady = false; public synchronized void setRealData(RealData realData){
if (isReady){
return;
}
this.realData = realData;
isReady = true;
notifyAll();
} @Override
public synchronized String getData() {
while (!isReady){
try {
wait();
} catch (Exception e) {
e.printStackTrace();
}
}
return realData.result;
} }

Client代码:

package cn.com.xSharp.futurePattern.simple;

public class Client {

	public Data request(final String qryStr){
final FutureData futureData = new FutureData();
new Thread(){
public void run(){
RealData realData = new RealData(qryStr);
futureData.setRealData(realData);
}
}.start();
return futureData;
}
}

TestMain代码:

package cn.com.xSharp.futurePattern.simple;

public class TestMain {

	public static void main(String[] args) {
Client client = new Client();
Data data = client.request("xtq");
System.out.println("请求完毕!"); try {
for (int i = 0;i < 12;i++){
Thread.sleep(100);
System.out.println("可以做做其他的事情哦....");
} } catch (InterruptedException e) {
e.printStackTrace();
} System.out.println("数据==:" + data.getData());
} }

执行结果:

请求完毕!
可以做做其他的事情哦....
可以做做其他的事情哦....
可以做做其他的事情哦....
可以做做其他的事情哦....
可以做做其他的事情哦....
可以做做其他的事情哦....
可以做做其他的事情哦....
可以做做其他的事情哦....
可以做做其他的事情哦....
可以做做其他的事情哦....
可以做做其他的事情哦....
可以做做其他的事情哦....
数据==:xtqxtqxtqxtqxtqxtqxtqxtqxtqxtq

  JDK里在1.5之后提供了专门Future模式的实现,这里我使用FutureTask来实现Future模式。

  FutureTask在JDK文档里的解释:

  可取消的异步计算。利用开始和取消计算的方法、查询计算是否完成的方法和获取计算结果的方法,此类提供了对 Future 的基本实现。仅在计算完成时才能获取结果;如果计算尚未完成,则阻塞 get 方法。一旦计算完成,就不能再重新开始或取消计算。 可使用 FutureTask 包装 Callable 或 Runnable 对象。因为 FutureTask 实现了 Runnable,所以可将 FutureTask 提交给 Executor 执行。 除了作为一个独立的类外,此类还提供了 protected 功能,这在创建自定义任务类时可能很有用。

  下面是它的两个构造函数:

FutureTask(Callable<V> callable)
创建一个 FutureTask,一旦运行就执行给定的 Callable。
FutureTask(Runnable runnable, V result)
创建一个 FutureTask,一旦运行就执行给定的 Runnable,并安排成功完成时 get 返回给定的结果 。

  这里我首先使用第二个构造函数Runnable实现Future模式,代码如下:

package cn.com.futuretest;

import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.FutureTask; public class FutureRunnable implements Runnable{
private Result result; // 操作的数据,模拟一个计算需要很长时间的数据 /* 初始化数据 */
public FutureRunnable(Result result) {
this.result = result;
} @Override
public void run() {
try {
for (int i = 0;i < 10;i++){
Thread.sleep(100);// 每隔100毫秒操作一次数据,模拟数据被长时间计算的场景
result.setData(result.getData() + ":" + "futureRunnable" + i);
}
} catch (InterruptedException e) {
e.printStackTrace();
}
} public static void main(String[] args) {
Result r = new Result("xSharp");// 构造测试数据
FutureRunnable futureCallable = new FutureRunnable(r);// 初始化runnable
FutureTask<Result> task = new FutureTask<Result>(futureCallable, r);
// 构造固定大小为一个线程的线程池
ExecutorService executorService = Executors.newFixedThreadPool(1);
// 执行线程
executorService.execute(task);
System.out.println("执行完毕!"); try {
for (int i = 0;i < 15;i++){
Thread.sleep(100);
System.out.println("数据还在计算中等待中,你可以做别的事情" + i);
}
} catch (InterruptedException e) {
e.printStackTrace();
} try {
System.out.println("打印结果是:" + task.get().getData());
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}finally{
System.exit(0);
} } }

  执行结果:

执行完毕!
数据还在计算中等待中,你可以做别的事情0
数据还在计算中等待中,你可以做别的事情1
数据还在计算中等待中,你可以做别的事情2
数据还在计算中等待中,你可以做别的事情3
数据还在计算中等待中,你可以做别的事情4
数据还在计算中等待中,你可以做别的事情5
数据还在计算中等待中,你可以做别的事情6
数据还在计算中等待中,你可以做别的事情7
数据还在计算中等待中,你可以做别的事情8
数据还在计算中等待中,你可以做别的事情9
数据还在计算中等待中,你可以做别的事情10
数据还在计算中等待中,你可以做别的事情11
数据还在计算中等待中,你可以做别的事情12
数据还在计算中等待中,你可以做别的事情13
数据还在计算中等待中,你可以做别的事情14
打印结果是:xSharp:futureRunnable0:futureRunnable1:futureRunnable2:futureRunnable3:futureRunnable4:futureRunnable5:futureRunnable6:futureRunnable7:futureRunnable8:futureRunnable9

  接下来我使用Callable<V> 接口实现FutureTask,代码如下:

package cn.com.futuretest;

import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.FutureTask; public class FutureCallable implements Callable<Result>{ private Result result; // 操作的数据,模拟一个计算需要很长时间的数据 /* 初始化数据 */
public FutureCallable(Result result) {
this.result = result;
} @Override
public Result call() throws Exception {
try {
for (int i = 0;i < 10;i++){
Thread.sleep(100);// 每隔100毫秒操作一次数据,模拟数据被长时间计算的场景
result.setData(result.getData() + ":" + "futureCallable" + i);
}
} catch (InterruptedException e) {
e.printStackTrace();
}
return result;
} public static void main(String[] args) {
long start = System.currentTimeMillis();
Result r = new Result("xSharp");// 构造测试数据
FutureCallable callable = new FutureCallable(r);
FutureTask<Result> task = new FutureTask<Result>(callable);
// 构造固定大小为一个线程的线程池
ExecutorService executorService = Executors.newFixedThreadPool(1);
// 执行线程
executorService.execute(task);
System.out.println("执行完毕!");
long curr01 = System.currentTimeMillis();
System.out.println("任务提交后的耗时:" + (curr01 - start) + "毫秒");
try {
for (int i = 0;i < 6;i++){
Thread.sleep(100);
System.out.println("数据还在计算中等待中,你可以做别的事情" + i);
}
} catch (InterruptedException e) {
e.printStackTrace();
} try {
System.out.println("打印结果是:" + task.get().getData());
long end = System.currentTimeMillis();
System.out.println("总耗时:" + (end - start) + "毫秒");
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}finally{
System.exit(0);
}
} }

  执行结果如下:

执行完毕!
任务提交后的耗时:6毫秒
数据还在计算中等待中,你可以做别的事情0
数据还在计算中等待中,你可以做别的事情1
数据还在计算中等待中,你可以做别的事情2
数据还在计算中等待中,你可以做别的事情3
数据还在计算中等待中,你可以做别的事情4
数据还在计算中等待中,你可以做别的事情5
打印结果是:xSharp:futureCallable0:futureCallable1:futureCallable2:futureCallable3:futureCallable4:futureCallable5:futureCallable6:futureCallable7:futureCallable8:futureCallable9
总耗时:1010毫秒

  这里我对代码做了一些调整,一个是加上了执行时间的统计,一个是我将干其他事情的程序执行时间变短,小于了线程本身执行的时间,这么做的目的是想和下面的程序对比,下面的代码当我执行线程后没有做其他的操作,而是直接获取线程执行的结果,具体代码如下:

package cn.com.futuretest;

import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.FutureTask; public class NioFutureCallable implements Callable<Result> { private Result result; // 操作的数据,模拟一个计算需要很长时间的数据 /* 初始化数据 */
public NioFutureCallable(Result result) {
this.result = result;
} @Override
public Result call() throws Exception {
try {
for (int i = 0;i < 10;i++){
Thread.sleep(100);// 每隔100毫秒操作一次数据,模拟数据被长时间计算的场景
result.setData(result.getData() + ":" + "NioFutureCallable" + i);
}
} catch (InterruptedException e) {
e.printStackTrace();
}
return result;
} public static void main(String[] args) {
long start = System.currentTimeMillis();
Result r = new Result("xSharp");// 构造测试数据
NioFutureCallable callable = new NioFutureCallable(r);
FutureTask<Result> task = new FutureTask<Result>(callable);
// 构造固定大小为一个线程的线程池
ExecutorService executorService = Executors.newFixedThreadPool(1);
// 执行线程
executorService.execute(task);
System.out.println("执行完毕!");
long curr01 = System.currentTimeMillis();
System.out.println("任务提交后的耗时:" + (curr01 - start) + "毫秒"); /* 第一次获取返回数据 */
try {
System.out.println("第一次打印结果是:" + task.get().getData());
long curr02 = System.currentTimeMillis();
System.out.println("第一次获取结果耗时:" + (curr02 - start) + "毫秒");
} catch (InterruptedException e1) {
e1.printStackTrace();
} catch (ExecutionException e1) {
e1.printStackTrace();
} try {
for (int i = 0;i < 10;i++){
Thread.sleep(100);
System.out.println("数据还在计算中等待中,你可以做别的事情" + i);
}
} catch (InterruptedException e) {
e.printStackTrace();
} try {
System.out.println("第二次打印结果是:" + task.get().getData());
long end = System.currentTimeMillis();
System.out.println("总耗时:" + (end - start) + "毫秒");
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}finally{
System.exit(0);
} } }

  执行结果如下:

执行完毕!
任务提交后的耗时:7毫秒
第一次打印结果是:xSharp:NioFutureCallable0:NioFutureCallable1:NioFutureCallable2:NioFutureCallable3:NioFutureCallable4:NioFutureCallable5:NioFutureCallable6:NioFutureCallable7:NioFutureCallable8:NioFutureCallable9
第一次获取结果耗时:1009毫秒
数据还在计算中等待中,你可以做别的事情0
数据还在计算中等待中,你可以做别的事情1
数据还在计算中等待中,你可以做别的事情2
数据还在计算中等待中,你可以做别的事情3
数据还在计算中等待中,你可以做别的事情4
数据还在计算中等待中,你可以做别的事情5
数据还在计算中等待中,你可以做别的事情6
数据还在计算中等待中,你可以做别的事情7
数据还在计算中等待中,你可以做别的事情8
数据还在计算中等待中,你可以做别的事情9
第二次打印结果是:xSharp:NioFutureCallable0:NioFutureCallable1:NioFutureCallable2:NioFutureCallable3:NioFutureCallable4:NioFutureCallable5:NioFutureCallable6:NioFutureCallable7:NioFutureCallable8:NioFutureCallable9
总耗时:2012毫秒

  我们看到当我们直接获取结果时候,整个主线程都被阻塞了,直到结果返回后才会执行下面的后续操作,这也就是说如果计算还没结束,我们就想获取结果这样整个执行流程都将被阻塞,这点在我们合理使用Future模式时候很重要。

  除了使用FutureTask实现Future模式,我们还可以使用ExecutorService的submit方法直接返回Future对象,Future就和我前面设计的原生Future类似,当我们开始调用时候返回的是一个虚拟结果,其实实际的计算还没有结束,只有等待吗一会儿后结果才会真正的返回,代码如下:

package cn.com.futuretest;

import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future; public class RetFutureCallable implements Callable<Result>{ private Result result; // 操作的数据,模拟一个计算需要很长时间的数据 public RetFutureCallable() {
result = new Result("xSharp");
} @Override
public Result call() throws Exception {
try {
for (int i = 0;i < 10;i++){
Thread.sleep(100);// 每隔100毫秒操作一次数据,模拟数据被长时间计算的场景
result.setData(result.getData() + ":" + "RetFutureCallable" + i);
}
} catch (InterruptedException e) {
e.printStackTrace();
}
return result;
} public static void main(String[] args) {
long start = System.currentTimeMillis();
RetFutureCallable callable = new RetFutureCallable();
// 构造固定大小为一个线程的线程池
ExecutorService executorService = Executors.newFixedThreadPool(1);
// 执行线程
Future<Result> r = executorService.submit(callable);
System.out.println("执行完毕!");
long curr01 = System.currentTimeMillis();
System.out.println("任务提交后的耗时:" + (curr01 - start) + "毫秒");
try {
for (int i = 0;i < 6;i++){
Thread.sleep(100);
System.out.println("数据还在计算中等待中,你可以做别的事情" + i);
}
} catch (InterruptedException e) {
e.printStackTrace();
} try {
System.out.println("打印结果是:" + r.get().getData());
long end = System.currentTimeMillis();
System.out.println("总耗时:" + (end - start) + "毫秒");
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}finally{
System.exit(0);
}
} } 

  执行结果如下:

执行完毕!
任务提交后的耗时:5毫秒
数据还在计算中等待中,你可以做别的事情0
数据还在计算中等待中,你可以做别的事情1
数据还在计算中等待中,你可以做别的事情2
数据还在计算中等待中,你可以做别的事情3
数据还在计算中等待中,你可以做别的事情4
数据还在计算中等待中,你可以做别的事情5
打印结果是:xSharp:RetFutureCallable0:RetFutureCallable1:RetFutureCallable2:RetFutureCallable3:RetFutureCallable4:RetFutureCallable5:RetFutureCallable6:RetFutureCallable7:RetFutureCallable8:RetFutureCallable9
总耗时:1006毫秒

  好了,本文写完了。

线程笔记:Future模式的更多相关文章

  1. 线程技术 ☞ Future模式

    线程技术可以让我们的程序同时做多件事情,线程的工作模式有很多,常见的一种模式就是处理网站的并发,今天我来说说线程另一种很常见的模式,这个模式和前端里的ajax类似:浏览器一个主线程执行javascri ...

  2. Java中的Future模式原理自定义实现

    摘要:Future模式类似于js中的ajax等,是一个异步获取数据的机制,这里我把自己的一些形象理解通过代码实现了一下.该机制可以形象的理解为:调用获取数据的方法,首先获得一个没有装数据的空箱子(这个 ...

  3. Java线程池(Callable+Future模式)

    转: Java线程池(Callable+Future模式) Java线程池(Callable+Future模式) Java通过Executors提供四种线程池 1)newCachedThreadPoo ...

  4. java future模式 所线程实现异步调用(转载

    java future模式 所线程实现异步调用(转载) 在多线程交互的中2,经常有一个线程需要得到另个一线程的计算结果,我们常用的是Future异步模式来加以解决.Future顾名思意,有点像期货市场 ...

  5. Java是如何实现Future模式的?万字详解!

    JDK1.8源码分析项目(中文注释)Github地址: https://github.com/yuanmabiji/jdk1.8-sourcecode-blogs 1 Future是什么? 先举个例子 ...

  6. 架构师养成记--9.future模式讲解

    什么是future模式呢?解释这个概念之前我们先来了解一个场景吧,财务系统的结账功能,这个功能可能是每个月用一次,在这一个月中相关的数据量已经积累得非常大,这一个功能需要调用好几个存储过程来完成.假如 ...

  7. Future模式

    Future模式简介 Future模式有点类似于网上购物,在你购买商品,订单生效之后,你可以去做自己的事情,等待商家通过快递给你送货上门.Future模式就是,当某一程序提交请求,期望得到一个答复.但 ...

  8. 闲谈Future模式-订蛋糕

    一. Future模式简介 Future有道翻译:n. 未来:前途:期货:将来时.我觉得用期货来解释比较合适.举个实际生活中例子来说吧,今天我女朋友过生日,我去蛋糕店准备给女朋友定个大蛋糕,超级大的那 ...

  9. java Future 模式

    考慮這樣一個情況,使用者可能快速翻頁瀏覽文件中,而圖片檔案很大,如此在瀏覽到有圖片的頁數時,就會導致圖片的載入,因而造成使用者瀏覽文件時會有停頓 的現象,所以我們希望在文件開啟之後,仍有一個背景作業持 ...

随机推荐

  1. jQuery UI resizable使用注意事项、实时等比例拉伸及你不知道的技巧

    这篇文章总结的是我在使用resizable插件的过程中,遇到的问题及变通应用的奇思妙想. 一.resizable使用注意事项 以下是我在jsfiddle上写的测试demo:http://jsfiddl ...

  2. Linux平台 Oracle 10gR2(10.2.0.5)RAC安装 Part1:准备工作

    Linux平台 Oracle 10gR2(10.2.0.5)RAC安装 Part1:准备工作 环境:OEL 5.7 + Oracle 10.2.0.5 RAC 1.实施前准备工作 1.1 服务器安装操 ...

  3. 旺财速啃H5框架之Bootstrap(四)

    上一篇<<旺财速啃H5框架之Bootstrap(三)>>已经把导航做了,接下来搭建内容框架.... 对于不规整的网页,要做成自适应就有点玩大了.... 例如下面这种版式的页面. ...

  4. AngularJs之九(ending......)

    今天继续angularJs,但也是最后一篇关于它的了,基础部分差不多也就这些,后续有机会再写它的提升部分. 今天要写的也是一个基础的选择列表: 一:使用ng-options,数组进行循环. <d ...

  5. FullCalendar日历插件说明文档

    FullCalendar提供了丰富的属性设置和方法调用,开发者可以根据FullCalendar提供的API快速完成一个日历日程的开发,本文将FullCalendar的常用属性和方法.回调函数等整理成中 ...

  6. JavaScript将字符串中的每一个单词的第一个字母变为大写其余均为小写

    要求: 确保字符串的每个单词首字母都大写,其余部分小写. 这里我自己写了两种方法,或者说是一种方法,另一个是该方法的变种. 第一种: function titleCase(str) { var new ...

  7. Js 数组返回去重后的数据

    function removeRepeat(data) { var temp = ""; var mainData = []; for (var i = 0; i < dat ...

  8. Android中的多线程断点下载

    首先来看一下多线程下载的原理.多线程下载就是将同一个网络上的原始文件根据线程个数分成均等份,然后每个单独的线程下载对应的一部分,然后再将下载好的文件按照原始文件的顺序"拼接"起来就 ...

  9. 查看mac中磁盘空间占用情况

    今天发现磁盘空间不够了,首先要找到那些文件夹占用了磁盘空间. du命令很好使 du -c -d 1 -m | sort -n -c 显示当前文件夹总计占用空间 -d 1 层级为1,即只显示当前目录下一 ...

  10. MongoDB学习笔记三—增删改文档上

    插入insert 单条插入 > db.foo.insert({"bar":"baz"}) WriteResult({ }) 批量插入 > db.fo ...