Bridging signals
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 9441   Accepted: 5166

Description

'Oh no, they've done it again', cries the chief designer at the Waferland chip factory. Once more the routing designers have screwed up completely, making the signals on the chip connecting the ports of two functional blocks cross each other all over the place. At this late stage of the process, it is too expensive to redo the routing. Instead, the engineers have to bridge the signals, using the third dimension, so that no two signals cross. However, bridging is a complicated operation, and thus it is desirable to bridge as few signals as possible. The call for a computer program that finds the maximum number of signals which may be connected on the silicon surface without crossing each other, is imminent. Bearing in mind that there may be thousands of signal ports at the boundary of a functional block, the problem asks quite a lot of the programmer. Are you up to the task? 

A typical situation is schematically depicted in figure 1. The ports of the two functional blocks are numbered from 1 to p, from top to bottom. The signal mapping is described by a permutation of the numbers 1 to p in the form of a list of p unique numbers in the range 1 to p, in which the i:th number specifies which port on the right side should be connected to the i:th port on the left side.Two signals cross if and only if the straight lines connecting the two ports of each pair do.

Input

On the first line of the input, there is a single positive integer n, telling the number of test scenarios to follow. Each test scenario begins with a line containing a single positive integer p < 40000, the number of ports on the two functional blocks. Then follow p lines, describing the signal mapping:On the i:th line is the port number of the block on the right side which should be connected to the i:th port of the block on the left side.

Output

For each test scenario, output one line containing the maximum number of signals which may be routed on the silicon surface without crossing each other.

Sample Input

4
6
4
2
6
3
1
5
10
2
3
4
5
6
7
8
9
10
1
8
8
7
6
5
4
3
2
1
9
5
8
9
2
3
1
7
4
6

Sample Output

3
9
1
4
题目大意:最大上升子序列。
解题方法:此题数据量较大,如果采用DP的话,那么时间复杂度太大,肯定超时,在这里必须采用二分法。
#include <stdio.h>

int main()
{
int nCase, num[], Stack[], ans = , low, high, mid, n;
scanf("%d", &nCase);
while(nCase--)
{
scanf("%d", &n);
for (int i = ; i < n; i++)
{
scanf("%d", &num[i]);
}
Stack[] = num[];
ans = ;
for (int i = ; i < n; i++)
{
low = ;
high = ans;
while(low <= high)
{
mid = (low + high) / ;
if (num[i] < Stack[mid])
{
high = mid - ;
}
else
{
low = mid + ;
}
}
Stack[low] = num[i];
ans = low > ans ? low : ans;
}
printf("%d\n", ans);
}
return ;
}

POJ 1631 Bridging signals的更多相关文章

  1. OpenJudge/Poj 1631 Bridging signals

    1.链接地址: http://poj.org/problem?id=1631 http://bailian.openjudge.cn/practice/1631 2.题目: Bridging sign ...

  2. poj 1631 Bridging signals (二分||DP||最长递增子序列)

    Bridging signals Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9234   Accepted: 5037 ...

  3. POJ 1631 Bridging signals(LIS O(nlogn)算法)

    Bridging signals Description 'Oh no, they've done it again', cries the chief designer at the Waferla ...

  4. POJ 1631 Bridging signals(LIS 二分法 高速方法)

    Language: Default Bridging signals Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1076 ...

  5. POJ 1631 Bridging signals & 2533 Longest Ordered Subsequence

    两个都是最长上升子序列,所以就放一起了 1631 因为长度为40000,所以要用O(nlogn)的算法,其实就是另用一个数组c来存储当前最长子序列每一位的最小值,然后二分查找当前值在其中的位置:如果当 ...

  6. POJ 1631 Bridging signals DP(最长上升子序列)

    最近一直在做<挑战程序设计竞赛>的练习题,感觉好多经典的题,都值得记录. 题意:给你t组数据,每组数组有n个数字,求每组的最长上升子序列的长度. 思路:由于n最大为40000,所以n*n的 ...

  7. POJ 1631 Bridging signals (LIS:最长上升子序列)

    题意:给你一个长为n(n<=40000)的整数序列, 要你求出该序列的最长上升子序列LIS. 思路:要求(nlogn)解法 令g[i]==x表示当前遍历到的长度为i的所有最长上升子序列中的最小序 ...

  8. Poj 1631 Bridging signals(二分+DP 解 LIS)

    题意:题目很难懂,题意很简单,求最长递增子序列LIS. 分析:本题的最大数据40000,多个case.用基础的O(N^2)动态规划求解是超时,采用O(n*log2n)的二分查找加速的改进型DP后AC了 ...

  9. POJ 1631 Bridging signals(LIS的等价表述)

    把左边固定,看右边,要求线不相交,编号满足单调性,其实是LIS的等价表述. (如果编号是乱的也可以把它有序化就像Uva 10635 Prince and Princess那样 O(nlogn) #in ...

随机推荐

  1. [WinAPI] API 9 [文件的删除、复制和移动功能]

    Windows系统为文件的删除.复制.重命名或移动文件提供了相应的API函数.删除文件使用DeleteFile函数:复制文件使用CopyFile函数:重命名文件和移动文件实际是一个操作,使用MoveF ...

  2. paip.slap工具与于64位win7与JDBC的性能对比

    paip.slap工具与于64位win7与JDBC的性能对比 作者Attilax  艾龙,  EMAIL:1466519819@qq.com  来源:attilax的专栏 地址:http://blog ...

  3. paip.导入数据英文音标到数据库mysql为空的问题之道解决原理

    paip.导入数据英文音标到数据库mysql为空的问题之道解决原理 #---原因:mysql 导入工具的bug #---解决:使用双引号不个音标括起来. 作者 老哇的爪子 Attilax 艾龙,  E ...

  4. Shell脚本学习入门(一)

    1.Shell脚本是解释型的语言. 2.Shell脚本建立的基本步骤: 3.Shell脚本文件的第一行一般可以是:"#! 路径名 -(选项)", 为了要使Shell脚本有移植性,请 ...

  5. python之对指定目录文件夹的批量重命名

    python之对指定目录文件夹的批量重命名 import os,shutil,string dir = "/Users/lee0oo0/Documents/python/test" ...

  6. 一個小技巧讓ipad或iphone的瀏覽器也能開啟firebug

    首先複製這一段代碼 javascript:(function(F,i,r,e,b,u,g,L,I,T,E){if(F.getElementById(b))return;E=F[i+'NS']& ...

  7. ES5 数组方法every和some

    Array.prototype.every() 概述 every() 方法测试数组的所有元素是否都通过了指定函数的测试. 语法 arr.every(callback[, thisArg]) 参数 ca ...

  8. 小白学数据分析----->什么才是留存率的关键?

    最近花了很多的时间在体验各种游戏,从火爆的卡牌,到策略,RPG等等,有一个问题在影响我,什么才是留存率的关键?今天就先讨论一些我的想法. 留存率已经成为大家最常提到的词汇,也是拿出来show一下的武器 ...

  9. Unity3D Shader入门指南(一)

    动机 自己使用Unity3D也有一段时间了,但是很多时候是流于表面,更多地是把这个引擎简单地用作脚本控制,而对更深入一些的层次几乎没有了解.虽然说Unity引擎设计的初衷就是创建简单的不需要开发者操心 ...

  10. Android Studio生成javadoc出错的解决办法

    一般使用Android Studio生成javadoc会有两个问题: 空指针异常 文档乱码 解决办法如下: 第1个问题:Tools --> Generate JavaDoc -->打开对话 ...