http://poj.org/problem?id=3070

根据本题算矩阵,用快速幂即可。

裸题

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; }
typedef int matrix[2][2];
matrix a, b;
const int M=10000;
int n;
inline void mul(matrix a, matrix b, matrix c, const int &la, const int &lb, const int &lc, const int &MOD) {
matrix t;
rep(i, la) rep(j, lc) {
t[i][j]=0;
rep(k, lb) t[i][j]=(t[i][j]+(a[i][k]*b[k][j])%MOD)%MOD;
}
rep(i, la) rep(j, lc) c[i][j]=t[i][j];
}
int main() {
while(~scanf("%d", &n) && n!=-1) {
b[0][0]=b[1][1]=1;
a[0][0]=a[0][1]=a[1][0]=1;
b[0][1]=b[1][0]=a[1][1]=0;
while(n) {
if(n&1) mul(a, b, b, 2, 2, 2, M);
mul(a, a, a, 2, 2, 2, M);
n>>=1;
}
printf("%d\n", b[1][0]);
}
return 0;
}

Description

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

0
9
999999999
1000000000
-1

Sample Output

0
34
626
6875

Hint

As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

.

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

.

Source

【POJ】3070 Fibonacci(矩阵乘法)的更多相关文章

  1. POJ 3070 Fibonacci(矩阵高速功率)

    职务地址:POJ 3070 用这个题学会了用矩阵高速幂来高速求斐波那契数. 依据上个公式可知,第1行第2列和第2行第1列的数都是第n个斐波那契数.所以构造矩阵.求高速幂就可以. 代码例如以下: #in ...

  2. poj 3070 Fibonacci (矩阵快速幂乘/模板)

    题意:给你一个n,输出Fibonacci (n)%10000的结果 思路:裸矩阵快速幂乘,直接套模板 代码: #include <cstdio> #include <cstring& ...

  3. poj 3070 Fibonacci 矩阵快速幂

    Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. F ...

  4. poj 3070 Fibonacci 矩阵相乘

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7715   Accepted: 5474 Descrip ...

  5. POJ 3070 Fibonacci 矩阵高速求法

    就是Fibonacci的矩阵算法.只是添加一点就是由于数字非常大,所以须要取10000模,计算矩阵的时候取模就能够了. 本题数据不强,只是数值本来就限制整数,故此能够0ms秒了. 以下程序十分清晰了, ...

  6. POJ 3070 Fibonacci 矩阵快速幂模板

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18607   Accepted: 12920 Descr ...

  7. POJ 3070 Fibonacci矩阵快速幂 --斐波那契

    题意: 求出斐波那契数列的第n项的后四位数字 思路:f[n]=f[n-1]+f[n-2]递推可得二阶行列式,求第n项则是这个矩阵的n次幂,所以有矩阵快速幂模板,二阶行列式相乘, sum[ i ] [ ...

  8. 矩阵快速幂 POJ 3070 Fibonacci

    题目传送门 /* 矩阵快速幂:求第n项的Fibonacci数,转置矩阵都给出,套个模板就可以了.效率很高啊 */ #include <cstdio> #include <algori ...

  9. poj 3070 Fibonacci(矩阵快速幂,简单)

    题目 还是一道基础的矩阵快速幂. 具体的居者的幂公式我就不明示了. #include<stdio.h> #include<string.h> #include<algor ...

  10. POJ3070 Fibonacci[矩阵乘法]

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13677   Accepted: 9697 Descri ...

随机推荐

  1. Linux Haproxy 安装和部署

    一.Haproxy 安装 下载地址 http://pan.baidu.com/s/1mggViXE cd /usr/local tar xzvf haproxy-.tar.gz cd haproxy- ...

  2. BZOJ 1004

    一道奇怪的数学题.为了这道题我看了很多题解,到底还是一知半解..整个感觉就是上了一场数学课. HNOI2008 Cards 题目描述 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有 ...

  3. Python列表的remove方法的注意事项

    为何没有删除列表中的全部元素? 解释: 按照执行顺序,第一个空格被删除之后,后面的元素会前移(变成['空格','空格','12','23']),指针下一次会指向新列表的第二个元素(即初始状态的第三个空 ...

  4. 【云计算】Dockerfile、镜像、容器快速入门

    Dockerfile.镜像.容器快速入门 1.1.Dockerfile书写示例 Dockerfile可以用来生成Docker镜像,它明确的定义了Image的生成过程.虽然直接修改容器也可以提交生成镜像 ...

  5. java回顾巩固

    看视频复习java有一段时间了.虽然现在做的东西是net的,但是一直没忘记复习java. 更多的大概在这里. java变量的命名规则: (A)组成规则: 1:英文大小写字母 2:数字 3:$和_ (2 ...

  6. 12.从上往下遍历二元树[LevelOrderOfBinaryTree]

    [题目] 输入一颗二元树,从上往下按层打印树的每个结点,同一层中按照从左往右的顺序打印. 例如输入 8    /  \   6    10  /\     /\ 5  7   9  11 输出8    ...

  7. java获取本机IP地址

    转载自:http://blog.csdn.net/thunder09/article/details/5360251 在网上找了几个用java获取本机IP地址的代码,发现都少都有些不完美,自己整理了一 ...

  8. ORACLE恢复删除的数据

    ---正在执行的 select a.username, a.sid,b.SQL_TEXT, b.SQL_FULLTEXT  from v$session a, v$sqlarea b where a. ...

  9. 【pymongo】连接认证 auth failed解决方法

    故事背景: 我在虚拟机(ip:192.168.xx.xx)上建立了一个mongo的数据库,里面已经存好了内容.里面的一个database叫做 "adb", 里面有个collecti ...

  10. HDU2084基础DP数塔

    数塔 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submissi ...