ZOJ 3903 Ant ZOJ Monthly, October 2015 - A
Ant
Time Limit: 1 Second Memory Limit: 32768 KB
There is an ant named Alice. Alice likes going hiking very much. Today, she wants to climb a cuboid. The length of cuboid's longest edge is n, and the other edges are all positive integers. Alice's starting point is a vertex of this cuboid, and she wants to arrive at the opposite vertex. The opposite vertex means the vertex which has no common planes or edges with the starting point. Just like the picture below:

Alice is very clever, she always walks on the shortest path. But she can only walk on the surface of the cuboid. Now, Alice only knows the length of cuboid's longest edge is n, and doesn't know the length of other edges. Suppose the L is the length of shortest path of a cuboid. Alice wants to compute the sum of L2 for every possible cuboid.
Input
The first line of input contains an integer T(T ≤ 100) . T is the number of the cases. In the following T lines, there are a positive integer n(1≤n≤1014) in each line. n is the longest edge of the cuboid.
Output
For each test case, output the sum of L2 for every possible cuboid in a line. L is the length of shortest path of a cuboid. It may be very large, so you must output the answer modulo 1000000007.
Sample Input
2
3
4
Sample Output
160
440
Hint
(3,2,1) and (3,1,2) are regrad as the same cuboids.
Author: MU, Tongzhou
题意:就是说给出长方体的长(最长边),问一个蚂蚁从左下角爬到右后上角的所有可能的最短距离的和
解法:
1、听说有人用矩阵乘法过了,蛮厉害的,至今不知怎么推递推式
2、只能傻傻的推公示
显然一个蚂蚁有两种方式到达右后上角
设长为n,令两边为a,b,路程为c
c^2 = n^2+(a+b)^2 = n^2+a^2+b^2+2*a*b
或 c^2 = (n+a)^2+b^2 = n^2+a^2+b^2+2*a*n
显然是上面那个比较小
然后现有如下公式
A = 1+2+3+...+n = (n+1)*n/2
B = 1^2+2^2+3^2+.....+n^2 = n(n+1)(2n+1)/6
C = 1^3+2^3+3^3+......+n^3 = (n*(n+1)/2)^2
然后因为(n,a,b)跟(n,b,a)一样
不妨令a<b
那么(a,b)共有n*(n-1)/2种方式
所以 那个 n^2 总共的和为 n^2*n*(n-1)/2 = n^2*A
观察每种a^2、b^2被加的次数,发现
a^2 的总共的和为 1^2*n+2^2*(n-1)+......+n^2*1 = sigma(1<=i<=n) i^2*(n-i+1) = sigma(1<=i<=n) (n+1)*i^2-i^3
= (n+1)*(1^2+2^2+3^2+.....+n^2)-(1^3+2^3+3^3+....+n^3)
= (n+1)*n(n+1)(2n+1)/6- (n*(n+1)/2)^2 = (n+1)*B-C
b^2 的总共的和为 1^2*1+2^2*2+.....+n^2*n = (n*(n+1)/2)^2 = C
所以a^2+b^2= (n+1)*n(n+1)(2n+1)/6 = (n+1)*B
再观察2*a*b
就是 2*sigma(1<=i<=n) i*(i+(i+1)+.....+n)
= 2*sigma(1<=i<=n) i*(n+i)*(n-i+1)/2
= sigma(1<=i<=n) i*(n^2-i^2+n+1)
= sigma(1<=i<=n) n^2*i-i^3+n*i+i
= n^2*A-C+n*A+A
三者相加即可
(公式有可能打错,但思路没错,具体请看代码)
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <vector>
#include <deque>
#include <queue>
using namespace std;
typedef long long LL;
typedef double DB;
#define Rep(i, n) for(int i = (0); i < (n); i++)
#define Repn(i, n) for(int i = (n)-1; i >= 0; i--)
#define For(i, s, t) for(int i = (s); i <= (t); i++)
#define Ford(i, t, s) for(int i = (t); i >= (s); i--)
#define rep(i, s, t) for(int i = (s); i < (t); i++)
#define repn(i, s, t) for(int i = (s)-1; i >= (t); i--)
#define MIT (2147483647)
#define MLL (1000000000000000000LL)
#define INF (1000000001)
#define mk make_pair
#define ft first
#define sd second
#define clr(x, y) (memset(x, y, sizeof(x)))
#define sqr(x) ((x)*(x))
#define sz(x) ((int) (x).size())
#define puf push_front
#define pub push_back
#define pof pop_front
#define pob pop_back
inline void SetIO(string Name) {
string Input = Name+".in", Output = Name+".out";
freopen(Input.c_str(), "r", stdin);
freopen(Output.c_str(), "w", stdout);
} const LL Mod = 1000000007LL;
const int Max = ;
LL n; inline LL GetLL() {
LL Ret = ;
char Ch = ' ';
while(!(Ch >= '' && Ch <= '')) Ch = getchar();
while(Ch >= '' && Ch <= '') {
Ret = Ret*10LL+Ch-'';
Ch = getchar();
}
return Ret;
} inline void Solve(); inline void Input() {
int TestNumber;
scanf("%d", &TestNumber);
while(TestNumber--) {
n = GetLL();
Solve();
}
} inline void Work(LL &m, bool &F2, bool &F3) {
if(!F2 && m% == ) F2 = , m /= ;
if(!F3 && m% == ) F3 = , m /= ;
m %= Mod;
} inline void Solve() {
LL X, Y, Z;
LL A, B, C;
LL m;
bool F2 = , F3 = ; // Get X
F2 = , F3 = , X = ;
m = n;
Work(m, F2, F3);
X = (X*m)%Mod; m = (n+);
Work(m, F2, F3);
X = (X*m)%Mod; m = (*n+);
Work(m, F2, F3);
X = (X*m)%Mod; // Get Y
F2 = , F3 = , Y = ;
m = n;
Work(m, F2, F3);
Y = (Y*m)%Mod; m = n+;
Work(m, F2, F3);
Y = (Y*m)%Mod; Y = (Y*Y)%Mod; // Get Z
F2 = , F3 = , Z = ;
m = n;
Work(m, F2, F3);
Z = (Z*m)%Mod; m = n+;
Work(m, F2, F3);
Z = (Z*m)%Mod; m = n%Mod;
// Get A
A = Z;
A = (A*m)%Mod;
A = (A*m)%Mod; // Get B
B = X;
B = (B*(m+))%Mod; // Get C
C = (((m*m)%Mod)*Z)%Mod;
C = (C-Y+Mod)%Mod;
C = (C+X)%Mod;
C = (C+((m*Z)%Mod))%Mod; LL Ans = (A+B+C)%Mod;
cout<<Ans<<endl;
} int main() {
Input();
//Solve();
return ;
}
ZOJ 3903 Ant ZOJ Monthly, October 2015 - A的更多相关文章
- ZOJ 3913 Bob wants to pour water ZOJ Monthly, October 2015 - H
Bob wants to pour water Time Limit: 2 Seconds Memory Limit: 65536 KB Special Judge There i ...
- ZOJ 3911 Prime Query ZOJ Monthly, October 2015 - I
Prime Query Time Limit: 1 Second Memory Limit: 196608 KB You are given a simple task. Given a s ...
- ZOJ 3910 Market ZOJ Monthly, October 2015 - H
Market Time Limit: 2 Seconds Memory Limit: 65536 KB There's a fruit market in Byteland. The sal ...
- ZOJ 3908 Number Game ZOJ Monthly, October 2015 - F
Number Game Time Limit: 2 Seconds Memory Limit: 65536 KB The bored Bob is playing a number game ...
- ZOJ 3905 Cake ZOJ Monthly, October 2015 - C
Cake Time Limit: 4 Seconds Memory Limit: 65536 KB Alice and Bob like eating cake very much. One ...
- 143 - ZOJ Monthly, October 2015 I Prime Query 线段树
Prime Query Time Limit: 1 Second Memory Limit: 196608 KB You are given a simple task. Given a s ...
- ZOJ 3903 Ant(数学,推公示+乘法逆元)
Ant Time Limit: 1 Second Memory Limit: 32768 KB There is an ant named Alice. Alice likes going ...
- ZOJ 3903 Ant(公式推导)
这个公式推导过程是看的这位大牛的http://blog.csdn.net/bigbigship/article/details/49123643 扩展欧几里德求模的逆元方法: #include < ...
- 思维+multiset ZOJ Monthly, July 2015 - H Twelves Monkeys
题目传送门 /* 题意:n个时刻点,m次时光穿梭,告诉的起点和终点,q次询问,每次询问t时刻t之前有多少时刻点是可以通过两种不同的路径到达 思维:对于当前p时间,从现在到未来穿越到过去的是有效的值,排 ...
随机推荐
- [Effective JavaScript 笔记]第5章:数组和字典--个人总结
前言 这节里其实一直都在讨论对象这个在js中的万能的数据结构.对象可以表式为多种的形式,表示为字典和数组之间的区别.更多的我觉得这章讨论多的是一些对应实现功能的相关操作,有可能出现的bug以及如何避免 ...
- nginx学习(一):基本安装
转载自http://summervast.blog.51cto.com/690507/385511 注意:可能因版本不同,个别指令不起作用,需要注意版本灵活安装,我在安装时也遇到过此问题 开始学习ng ...
- [官方教程] [ES4封装教程]2.使用 Easy Sysprep v4 封装 Windows XP
(一)备份当前操作系统封装的第一步,其实是备份当前安装好的操作系统.避免我们在之后的步骤中出现问题,以至于还要重新安装操作系统,浪费时间精力.系统备份想必大家都会.对于WinXP而言,建议使用Ghos ...
- poj2568
Y2K Accounting Bug Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11275 Accepted: 56 ...
- django-cms 代码研究(八)app hooks
app钩子,啥玩意呢? 就是把现有的app,集成到cms的一种手段. 有两种实现方式: 1) 定义cms_app.py,如下: from cms.app_base import CMSApp from ...
- encode与decode,unicode与中文乱码的问题
encode是指将unicode字符编码成其他字符集的字符,如utf-8,ascii等: 而decode是指将其他字符编码,如utf-8转换成unicode编码. encode是指将人类用的语言(字符 ...
- 【OpenStack】OpenStack系列17之OpenStack私有云设计一
[软件系统] 1.操作系统(Minimal最小化安装): CentOS-6.6-x86_64,CentOS 6最后一个版本,官方建议版本. 相对于6.5版本: 强化对 SCSI 设备的处理,有助应付某 ...
- Longest Substring with At Most K Distinct Characters
Given a string, find the longest substring that contains only two unique characters. For example, gi ...
- iOS 网络请求中的challenge
这里有一篇文章,请阅读,感谢作者!http://blog.csdn.net/kmyhy/article/details/7733619 当请求的网站有安全认证问题时,都需要通过 [[challenge ...
- Linux删除乱码文件
2015年2月28日 17:11:54 1. ls -i 列出文件的inode号 ??Φ-ͦ?+?-ˬͩ-????-??.doc 2. find folder -inum -delete -de ...