D. Developing Game
 

Pavel is going to make a game of his dream. However, he knows that he can't make it on his own so he founded a development company and hired n workers of staff. Now he wants to pick n workers from the staff who will be directly responsible for developing a game.

Each worker has a certain skill level vi. Besides, each worker doesn't want to work with the one whose skill is very different. In other words, the i-th worker won't work with those whose skill is less than li, and with those whose skill is more than ri.

Pavel understands that the game of his dream isn't too hard to develop, so the worker with any skill will be equally useful. That's why he wants to pick a team of the maximum possible size. Help him pick such team.

Input

The first line contains a single integer n (1 ≤ n ≤ 105) — the number of workers Pavel hired.

Each of the following n lines contains three space-separated integers liviri (1 ≤ li ≤ vi ≤ ri ≤ 3·105) — the minimum skill value of the workers that the i-th worker can work with, the i-th worker's skill and the maximum skill value of the workers that the i-th worker can work with.

Output

In the first line print a single integer m — the number of workers Pavel must pick for developing the game.

In the next line print m space-separated integers — the numbers of the workers in any order.

If there are multiple optimal solutions, print any of them.

Examples
input
4
2 8 9
1 4 7
3 6 8
5 8 10
output
3
1 3 4
 题意:
  给你n个人的 位置v[i],同时每个人有一个可接受范围 l[i], r[i];
  现在让你选尽量多的人,使得被选的人 都能互相接受
  输出人数及选择方案
题解
  这个题看到不太会
  对于两个人来说要让它们相互接受可以有以下情况
          l1          v1              r1
                  l2  v2      r2
             l2            v2     r2 
            l2           v2              r2
           l2                     v2     r2
  发现一些规则
  就是相交范围就是l1 v1 与 l2 v2的相交的一段,但是当v2超过r1的时候,就不可行了
  所有我们可以想到一种 加上,减去的操作,
  当v1 出现我们在线段树上加入l1,v1的这段有效的区间
  当走过r1的时候 把l1 v1在线段树上减去即可 
  显然对于一条线段要拆成两条线段, l1 v1 1 v1 和   l1 v1 -1 v2
  再在线段树上操作就可以了
  统计答案的时候呢,也可以利用线段树有效区间出来
  @doubility
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double Pi = acos(-1.0);
const int N = 5e5+, M = 2e5+, mod = 1e9+, inf = 2e9; int n;
int tag[N*],mx[N*];
void push_up(int i) {
mx[i] = max(mx[ls],mx[rs]);
}
void push_down(int i,int ll,int rr) {
if(tag[i] != && ll != rr) {
tag[ls] += tag[i];
tag[rs] += tag[i];
mx[ls] += tag[i];
mx[rs] += tag[i];
tag[i] = ;
}
}
void update(int i,int ll,int rr,int l,int r,int v)
{
push_down(i,ll,rr);
if(l == ll && r == rr) {
tag[i] += v;
mx[i] += v;
return ;
}
if(r <= mid) update(ls,ll,mid,l,r,v);
else if(l > mid) update(rs,mid+,rr,l,r,v);
else {
update(ls,ll,mid,l,mid,v);
update(rs,mid+,rr,mid+,r,v);
}
push_up(i);
} int query(int i,int ll,int rr,int x) {
push_down(i,ll,rr);
if(ll == rr) return ll;
if(mx[ls] == x) return query(ls,ll,mid,x);
else return query(rs,mid+,rr,x);
push_up(i);
}
struct ss{
int l,r,h,in;
ss(int l = , int r = , int h = ,int in = ) : l(l), r(r), h(h),in(in) {}
bool operator < (const ss & b) const {
return h < b.h || h == b.h && in > b.in;
}
}p[N],P[N];
int main() {
scanf("%d",&n);
for(int i = ; i <= n; ++i) {
int l,v,r;
scanf("%d%d%d",&l,&v,&r);
p[i] = ss(l,v,v,);
p[i+n] = ss(l,v,r,-);
P[i] = ss(l,r,v,);
}
int m = n << ;
sort(p+,p+m+);
int ans = ,x,y;
for(int i = ; i <= m; ++i) {
int l = p[i].l, r = p[i].r;
update(,,,l,r,p[i].in);
if(mx[] > ans) {
ans = mx[];
x = query(,,,mx[]);
y = p[i].h;
}
}
printf("%d\n",ans);
for(int i = ; i <= n; ++i) {
if(P[i].l <= x && P[i].r >= y && P[i].h >= x && P[i].h <= y) printf("%d\n",i);
}
return ;
}

Codeforces Round #222 (Div. 1) D. Developing Game 线段树有效区间合并的更多相关文章

  1. Codeforces Round #222 (Div. 1) D. Developing Game

    D - Developing Game 思路:我们先枚举左边界,把合法的都扣出来,那么对于这些合法的来说值有v 和 r两维了,把v, r看成线段的两端, 问题就变成了,最多能选多少线段 使得不存在这样 ...

  2. Codeforces Round #603 (Div. 2) E. Editor(线段树)

    链接: https://codeforces.com/contest/1263/problem/E 题意: The development of a text editor is a hard pro ...

  3. Codeforces Round #244 (Div. 2) B. Prison Transfer 线段树rmq

    B. Prison Transfer Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/pro ...

  4. Codeforces Round #530 (Div. 2) F (树形dp+线段树)

    F. Cookies 链接:http://codeforces.com/contest/1099/problem/F 题意: 给你一棵树,树上有n个节点,每个节点上有ai块饼干,在这个节点上的每块饼干 ...

  5. Codeforces Round #222 (Div. 1) D. Developing Game 扫描线

    D. Developing Game 题目连接: http://www.codeforces.com/contest/377/problem/D Description Pavel is going ...

  6. Codeforces Round #546 (Div. 2) E 推公式 + 线段树

    https://codeforces.com/contest/1136/problem/E 题意 给你一个有n个数字的a数组,一个有n-1个数字的k数组,两种操作: 1.将a[i]+x,假如a[i]+ ...

  7. Codeforces Round #275 Div.1 B Interesting Array --线段树

    题意: 构造一个序列,满足m个形如:[l,r,c] 的条件. [l,r,c]表示[l,r]中的元素按位与(&)的和为c. 解法: 线段树维护,sum[rt]表示要满足到现在为止的条件时该子树的 ...

  8. Codeforces Round #271 (Div. 2) F. Ant colony 线段树

    F. Ant colony time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  9. Codeforces Round #406 (Div. 2) D. Legacy (线段树建图dij)

    D. Legacy time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...

随机推荐

  1. DialogFragment is gone after returning back from another activity

    基本情景如下: 在DialogFragment中单击一个按钮跳转到another Activity做一些逻辑处理,然后将返回的结果回显到该DialogFragment上. 处理逻辑是: 在Dialog ...

  2. Beta阶段第二次Scrum Meeting

    此文章已于 2:51:42 2016/12/8 重新发布到 buaa_overwatch Beta阶段第二次Scrum Meeting 情况简述 BETA阶段第二次Scrum Meeting 敏捷开发 ...

  3. JDK安装,环境配置

    在安装完jdk后,还需要对jdk的环境变量进行配置才能正常使用 1.右键选择 计算机→属性→高级系统设置→高级→环境变量 2.系统变量→新建 变量名:JAVA_HOME 变量值:(变量值填写你的jdk ...

  4. StringBuffer类的功能

    StringBuffer类 1.添加功能 public StringBuffer append(String str):可以把任意类型数据添加到缓冲区,并返回缓冲区域 public StringBuf ...

  5. JVM垃圾回收算法

  6. [Nhibernate]sqlite数据库基本使用

    目录 写在前面 操作步骤 总结 写在前面 昨天有朋友问我在nhibernate中如何使用sqlite数据库,当时实在忙的不可开交,下周要去山西出差,实在没空,按我的说法使用sqlite跟使用sqlse ...

  7. web在线打印,打印阅览,打印维护,打印设计

    winform打印的方案比较多,实现也比较容易,而且效果也非常炫:但现在越来越多的系统是web系统,甚至是移动端.网上也有非常的web打印方案,但各式各样的问题非常多,比如js兼容性,稳定性等一直缠绕 ...

  8. Websites for more Android development information

    There is a vibrant, helpful Android developer community on the Web. Here are a numberof useful websi ...

  9. 【Alpha版本】冲刺阶段——Day 10

    我说的都队 031402304 陈燊 031402342 许玲玲 031402337 胡心颖 03140241 王婷婷 031402203 陈齐民 031402209 黄伟炜 031402233 郑扬 ...

  10. Ajax方法提交整个表单的信息

    <pre>$.ajax({                 cache: true,                 type: "POST",             ...