下面是difficulty 1的题

1003   Max Sum

最长递增子序列。非常经典,最棒的解法是在线算法O(n)的复杂度。

贴的呢,是用dp做的代码。

先是一个高亮的dp递推式,然后找到最大处,用k记录。即所求的子序列的结尾,之后倒推,用减法推出子序列的开头位置。

要注意的点就是各个变量的初始化,初始化不好,很容易WA。还有找子序列的头的时候,倒推的时候找到等值的数是不跳出的,但是更新gx的值,因为0的存在。

 #include <iostream>
 #include <cstring>
 using namespace std;
 ];
 ];
 int main()
 {
     int t;
     cin>>t;
     ;
     while(t--)
     {
          int n;
          cin>>n;
          ;i<=n;i++)
          {
              cin>>a[i];
          }
          memset(dp,,sizeof(dp));
          ;i<=n;i++)
 {
              ]<)
                 dp[i]=a[i];
              else
                 dp[i]=dp[i-]+a[i];
 }

          ],k=;
          ;i<=n;i++)
          {
              if(dp[i]>ans)
              {
                  ans=dp[i];
                  k=i;
              }
          }
          int max=ans;
          int gx=k,sx=k;
          ;i--)
          {
              max-=a[i];
              ) sx=i;
          }

          cout<<"Case "<<p++<<":"<<endl;
          cout<<ans<<" "<<sx<<" "<<gx<<endl;
          ) cout<<endl;
     }
     ;
 }

1025   Constructing Roads In JGShining's Kingdom

这道题也是非常非常经典的,重点是怎么去想到这是一个LIS。

你把一条轴上的看成数组的下标,一条轴上的看成数组的值,一一对应起来,发现它所要求的就是该数组中的LIS。

这里写的是nlogn的LIS的方法。具体的可以看看书或者网上的博客,LIS本来朴素的做法是n²的,但是当你换一个方式dp,dp[n]表示的是长度为n+1的子序列的结尾的最大值。就可以降到nlogn。

 #include <cstdio>
 #include <iostream>
 #include <algorithm>
 using namespace std;
 +;
 const int INF = 0x3f3f3f3f;
 int road[maxn],dp[maxn];
 int main()
 {
     int n,x,y;
     ;
     while(~scanf("%d",&n))
     {
         ;i<n;i++)
             dp[i] = INF;
         ;i<n;i++)
         {
             scanf("%d%d",&x,&y);
             road[x] = y;
         }
         ;i<=n;i++)
         {
             *lower_bound(dp,dp+n,road[i]) = road[i];
         }
         int len = lower_bound(dp,dp+n,INF) - dp;

         printf("Case %d:\n",p++);
         printf("My king, at most %d road",len);
         ) printf("s");
         printf(" can be built.\n\n");
     }
     ;
 }

1058   Humble Numbers

这道题比较恶心的是输出,英文的序数词的格式orz。

这段dp也比较奇特,对当时的我来说。

 ,p2=,p3=,p5=,p7=;
 rec[i++] = ;
 )
 {
     *rec[p2],*rec[p3]);
     *rec[p5],*rec[p7]);
     rec[i] = min( one , two );
     *rec[p2]) p2++;
     *rec[p3]) p3++;
     *rec[p5]) p5++;
     *rec[p7]) p7++;
     i++;
 }
 #include <cstdio>
 #include <algorithm>
 using namespace std;

 ];
 int main()
 {
     ,p2=,p3=,p5=,p7=;
     rec[i++] = ;
     )
     {
         *rec[p2],*rec[p3]);
         *rec[p5],*rec[p7]);
         rec[i] = min( one , two );
         *rec[p2]) p2++;
         *rec[p3]) p3++;
         *rec[p5]) p5++;
         *rec[p7]) p7++;
         i++;
     }
     int n;
     while(~scanf("%d",&n) && n)
     {
          ==  && n% != )
             printf("The %dst humble number is %d.\n",n,rec[n]);
          ==  && n% != )
             printf("The %dnd humble number is %d.\n",n,rec[n]);
          ==  && n% != )
             printf("The %drd humble number is %d.\n",n,rec[n]);
         else
             printf("The %dth humble number is %d.\n",n,rec[n]);
     }
     ;
 }

1059   Dividing

hdu分类 Dynamic Programming(这是一场漫长的旅途)的更多相关文章

  1. HDU 4223 Dynamic Programming?(最小连续子序列和的绝对值O(NlogN))

    传送门 Description Dynamic Programming, short for DP, is the favorite of iSea. It is a method for solvi ...

  2. hdu 4223 Dynamic Programming?

    Dynamic Programming? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  3. hdu 4223 Dynamic Programming? (dp)

    //连续的和的绝对值最小 # include <stdio.h> # include <string.h> # include <algorithm> # incl ...

  4. hdu 4972 A simple dynamic programming problem(高效)

    pid=4972" target="_blank" style="">题目链接:hdu 4972 A simple dynamic progra ...

  5. HDU-4972 A simple dynamic programming problem

    http://acm.hdu.edu.cn/showproblem.php?pid=4972 ++和+1还是有区别的,不可大意. A simple dynamic programming proble ...

  6. 动态规划 Dynamic Programming 学习笔记

    文章以 CC-BY-SA 方式共享,此说明高于本站内其他说明. 本文尚未完工,但内容足够丰富,故提前发布. 内容包含大量 \(\LaTeX\) 公式,渲染可能需要一些时间,请耐心等待渲染(约 5s). ...

  7. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  8. Dynamic Programming

    We began our study of algorithmic techniques with greedy algorithms, which in some sense form the mo ...

  9. 算法导论学习-Dynamic Programming

    转载自:http://blog.csdn.net/speedme/article/details/24231197 1. 什么是动态规划 ------------------------------- ...

随机推荐

  1. RabbitMQ 声明Queue时的参数们的Power

    参数们的Power 在声明队列的时候会有很多的参数 public static QueueDeclareOk QueueDeclare(this IModel model, string queue ...

  2. Fedora 23安装 NS2 (network simulator 2)

    1 实验环境 OS: Fedora 23 workstation 2 实验步骤 ( 参考了:http://www.isi.edu/nsnam/ns/ns-build.html) 本次实验的实验环境: ...

  3. C# 4.0 之线程安全集合篇

    资料:http://www.cnblogs.com/chengxiaohui/articles/5672768.html

  4. fedora23的打印服务

    cups: common unix printing system. 是通用的打印服务. whatever 不管什么; whichever: 不管哪个 可以使用 http://localhost:63 ...

  5. Maven、SecureCRT使用问题汇集

    1 Maven 无法下载pom文件中相关的依赖包 该问题可能有很多原因,我的原因是host中的localhost被修改了,改回来即可! 看起来好像出了一些网络原因的问题,顺着这个方向搜索,发现国外也有 ...

  6. Redis、Memcache和MongoDB的区别(转)

    1.性能 都比较高,性能对我们来说应该都不是瓶颈 总体来讲,TPS方面redis和memcache差不多,要大于mongodb 2.操作的便利性 memcache数据结构单一 redis丰富一些,数据 ...

  7. 【Json】关于json解析时异常org.json.JSONException: A JSONObject text must begin with '{' at character 1 of {的解决方法

    遇到这种异常有几种情况: 1.JSON格式有问题,检查一下格式. 2.格式没问题,仍然报错,这个是因为你的json文件头里带有编码字符(如UTF-8等),读取字符串时json串是正常的,但是解析就有异 ...

  8. thinkphp3.2.3之自动完成的实现

    有时候,我们希望系统能够帮我们自动完成一些功能,比如自动为密码加密,忽略空等,这个时候我们就需要利用到自动完成(填写)的功能. ThinkPHP 模型层提供的数据处理方法,主要用于数据的自动处理和过滤 ...

  9. PHP导出数据到CSV文件函数 csv_export()

    后台往往需要导出各种数据到 Excel文档中.通常我们是导出 .csv文件格式,PHP导出函数参考代码如下: /** * 导出数据到CSV文件 * * @param array $data 二维数组( ...

  10. Go - 变量初始化 及 注意事项

    Go变量 初始化 对 复合类型(数组.切片.字典.结构体)变量的初始化是,有一些语法限制: 1.初始化表达式必须包含类型标签: 2.左花括号必须在类型尾部,不能另起一行: 3.多个成员初始值以逗号分隔 ...