LightOJ 1319 - Monkey Tradition CRT除数互质版
本题亦是非常裸的CRT。
CRT的余数方程
那么定义
则
其中
为模mi的逆元。
/** @Date : 2016-10-23-15.11
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/Lweleth
* @Version : $
*/
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <utility>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <stack>
#include <queue>
#define LL long long
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std;
const int INF = 0x3f3f3f3f;
const int N = 1e5+2000;
LL r[16];
LL p[16];
LL gcd(LL a, LL b)
{
return b?gcd(b, a % b):a;
}
LL exgcd(LL a, LL b, LL &x, LL &y)
{
LL d = a;
if(!b)
{
x = 1;
y = 0;
}
else
{
d = exgcd(b , a % b, y, x);
y -= (a / b) * x;
}
return d;
}
LL Inv(LL a, LL b)//exgcd求逆元
{
LL g = gcd(a, b);
if(g != 1)
return -1;
LL x, y;
exgcd(a, b, x, y);
return (x % b + b) % b;
}
//x--= (r1*M1*(M1^-1)+r2*M2*(M2^-1)…rn*Mn*(Mn^-1)) mod M;
//M 是所有互素p的乘积 Mi 是 M/p[i]
//M^-1是 模 p[i]的逆元
LL CRT(LL *r, LL *p, int n)
{
LL M = 1;
LL ans = 0;
for(int i = 0; i < n; i++)
{
M *= p[i];
}
for(int i = 0; i < n; i++)
{
LL x, y;
LL Mi = M / p[i];
ans = (ans + r[i] * Mi * Inv(Mi, p[i])) % M;
}
if(ans < 0)
ans += M;
return ans;
}
int main()
{
int T;
int cnt = 0;
cin >> T;
while(T--)
{
int n;
scanf("%d", &n);
for(int i = 0; i < n; i++)
{
scanf("%lld%lld", p + i, r + i);
}
LL ans = CRT(r, p, n);
printf("Case %d: %lld\n", ++cnt, ans);
}
return 0;
}
LightOJ 1319 - Monkey Tradition CRT除数互质版的更多相关文章
- LightOJ 1319 Monkey Tradition(中国剩余定理)
题目链接:https://vjudge.net/contest/28079#problem/U 题目大意:给你n(n<12)行,每行有pi,ri,求一个数ans满足ans%pi=ri(i从1~n ...
- 1319 - Monkey Tradition
1319 - Monkey Tradition PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB ...
- X问题(中国剩余定理+不互质版应用)hdu1573
X问题 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- codeforces 687B - Remainders Game 数学相关(互质中国剩余定理)
题意:给你x%ci=bi(x未知),是否能确定x%k的值(k已知) ——数学相关知识: 首先:我们知道一些事情,对于k,假设有ci%k==0,那么一定能确定x%k的值,比如k=5和ci=20,知道x% ...
- POJ 2891- Strange Way to Express Integers CRT 除数非互质
题意:给你余数和除数求x 注意除数不一定互质 思路:不互质的CRT需要的是将两个余数方程合并,需要用到扩展GCD的性质 合并互质求余方程 m1x -+ m2y = r2 - r1 先用exgcd求出特 ...
- hdu X问题 (中国剩余定理不互质)
http://acm.hdu.edu.cn/showproblem.php?pid=1573 X问题 Time Limit: 1000/1000 MS (Java/Others) Memory ...
- [HDU3240]Counting Binary Trees(不互质同余除法)
Counting Binary Trees Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- C语言:互质
今天遇到一道奇怪的程序题,和平常的不同.同样都是互质,但是一般的题目都是判断两个数字是否互质,但这道题则是给定一个数字n,要求输出所有小于等于n的与n互质的数,题目已经在下面给出: 质数与互质概念不是 ...
- openjudge7834:分成互质组 解析报告
7834:分成互质组 总时间限制: 1000ms 内存限制: 65536kB 描述 给定n个正整数,将它们分组,使得每组中任意两个数互质.至少要分成多少个组? 输入 第一行是一个正整数n.1 &l ...
随机推荐
- Unicode,UTF-32,UTF-16,UTF-8到底是啥关系?
编码的目的,就是给抽象的字符赋予一个数值,好在计算机里面表示.常见的ASCII使用8bit给字符编码,但是实际只使用了7bit,最高位没有使用,因此,只能表示128个字符:ISO-8859-1(也叫L ...
- 【转】c++面试基础
1,关于动态申请内存 答:内存分配方式三种: (1)从静态存储区域分配:内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在. 全局变量,static变量. (2)在栈上创建:在执行函 ...
- 实现虚拟机VMware上Centos的linux与windows互相复制与粘贴
转自:http://blog.csdn.net/u012243115/article/details/40454063 1.打开虚拟机的菜单“虚拟机”,下拉框中会有一个“安装 VMwareTools” ...
- mysql 相同表结构拷贝数据
第一种方法: 在导出表结构的时候可以勾选导出数据: 第二种方法: 表已经存在了,只需要数据即可.这个时候可以编写sql语句(暂不支持不同服务器之间的表数据复制) insert into tab_a(i ...
- Word Ladder Problem (DFS + BFS)
Given two words (beginWord and endWord), and a dictionary's word list, find the length of shortest t ...
- block知识总结
一.block在内存中存在的形式 1.当把block句法写在函数或者方法外面时,系统会在静态数据区分配一块内存区域给block对象.这片区域在程序执行期会一直存在. 2.当block句法写在函数或者方 ...
- LintCode-165.合并两个排序链表
合并两个排序链表 将两个排序链表合并为一个新的排序链表 样例 给出 1->3->8->11->15->null,2->null, 返回 1->2->3- ...
- 【bzoj4715】囚人的旋律 dp
题目描述 给你一个 $1\sim n$ 的排列 $a_i$ ,若 $i\le j$ 且 $a_i\ge a_j$ ,则 $i$ 到 $j$ 有一条边.现在给你这张图,求既是独立集(任意两个选定点都没有 ...
- 【bzoj3312】[Usaco2013 Nov]No Change 状态压缩dp+二分
题目描述 Farmer John is at the market to purchase supplies for his farm. He has in his pocket K coins (1 ...
- Python 源码剖析(四)【LIST对象】
四.LIST对象 1.PyListObject对象 2.PyListObject的创建与维护 3.PyListObject 对象缓冲池 4.Hack PyListObject 1.PyListObje ...