动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance
引言
二维动态规划中最常见的是棋盘型二维动态规划。
即
func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关
这种情况下,时间复杂度 O(n*n),空间复杂度往往可以优化为O(n)
例题 1
Minimum Path Sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
时间复杂度 O(n*n),空间复杂度O(n)的解法。
这里用了个以前不用的技巧,当想把数组初始化为非0的值时,不用memset,而改用vector表示数组。
class Solution {
public:
int minPathSum(vector<vector<int> > &grid) {
if(grid.size() == || grid[].size() == ) return ;
int H = grid.size(), W = grid[].size();
vector<int> path(W+, INT_MAX);
path[] = ;
for(int i = ; i <= H; ++i)
for(int j = ; j <= W; path[j] = min(path[j-], path[j]) + grid[i-][j-], ++j);
return path[W];
}
};
例题 2
Unique Paths II
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

Above is a 3 x 7 grid. How many possible unique paths are there?
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
Note: m and n will be at most 100.
时间复杂度 O(n*n),空间复杂度O(n)
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
if(obstacleGrid.size() == || obstacleGrid[].size() == ) return ;
int H = obstacleGrid.size(), W = obstacleGrid[].size();
int paths[W+]; memset(paths, , sizeof(paths));
paths[] = (obstacleGrid[][] ? : );
for(int i = ; i <= H; ++i){
for(int j = ; j <= W; ++j){
paths[j] = (obstacleGrid[i-][j-] ? : paths[j-] + paths[j]);
}
}
return paths[W];
}
};
例题 3
很熟悉的 Edit Distance
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
类似的还有http://basicalgos.blogspot.com/上的 53. Edit Distance between strings
这道题目我们要设置两个变量,i和j, E(i, j) 表示word1中以i 结尾的子串到表示word2中以j 结尾的子串的距离。
状态转移方程借助53. Edit Distance between strings上的这张图片来说明:

LeetCode那道题的实现代码,时间复杂度 O(n*n),空间复杂度O(n)
class Solution {
public:
int minDistance(string word1, string word2) {
if(word1.empty() && word2.empty()) return ;
int len1 = word1.length(), len2 = word2.length();
int A[len2+]; int pre;
memset(A, , sizeof(A));
for(int i = ; i <= len1; ++i){
for(int j = ; j <= len2; ++j){
int Min = INT_MAX;
if(i > ) Min = min(A[j]+, Min);
if(j > ) Min = min(A[j-]+, Min);
if(i > && j > ) Min = min(Min, pre+(word1[i-] == word2[j-] ? : ));
if(i == && j == ) Min = ;
pre = A[j];
A[j] = Min;
}
}
return A[len2];
}
};
后记
棋盘型二维动态规划典型的题目还有“寻找最长公共子串(substring)”,“寻找最长公共子序列(subsequence)”。
这些都可以给出时间复杂度 O(n*n),空间复杂度O(n)的解。
动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance的更多相关文章
- LeetCode之“动态规划”:Minimum Path Sum && Unique Paths && Unique Paths II
之所以将这三道题放在一起,是因为这三道题非常类似. 1. Minimum Path Sum 题目链接 题目要求: Given a m x n grid filled with non-negative ...
- 二维动态规划——Interleaving String
97. Interleaving String Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2 ...
- 543A - Writing Code(二维动态规划)
题意:现在要写m行代码,总共有n个文件,现在给出第i个文件每行会出现v[i]个bug,问你在bug少于b的条件下有多少种安排 分析:定义dp[i][j][k],i个文件,用了j行代码,有k个bug 状 ...
- LEETCODE —— Unique Paths II [动态规划 Dynamic Programming]
唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are ...
- poj 2155:Matrix(二维线段树,矩阵取反,好题)
Matrix Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 17880 Accepted: 6709 Descripti ...
- [LeetCode] Unique Paths && Unique Paths II && Minimum Path Sum (动态规划之 Matrix DP )
Unique Paths https://oj.leetcode.com/problems/unique-paths/ A robot is located at the top-left corne ...
- Leetcode之动态规划(DP)专题-63. 不同路径 II(Unique Paths II)
Leetcode之动态规划(DP)专题-63. 不同路径 II(Unique Paths II) 初级题目:Leetcode之动态规划(DP)专题-62. 不同路径(Unique Paths) 一个机 ...
- Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)
Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. ...
- [leetcode]304Range Sum Query 2D - Immutable动态规划计算二维数组中子数组的sum
303一维数组的升级版,方法就是用二维数组res存下从(0,0)到当前位置的sum,存的方法是动态规划,看着二维数组画圈比较好搞清楚其中的加减法 算子数组的sum的时候也是和存差不多的逻辑,就是某一部 ...
随机推荐
- fp-growth树创建代码及详细注释
事务集过滤重排: #FP树节点结构 class treeNode: def __init__(self,nameValue,numOccur,parentNode): self.name=nameVa ...
- struts2 result type属性说明
首先看一下在struts-default.xml中对于result-type的定义: <result-types><result-type name="chain" ...
- Java IO(文件操作工具类)
FileOperate实现的功能: 1. 返回文件夹中所有文件列表 2. 读取文本文件内容 3. 新建目录 4. 新建多级目录 5. 新建文件 6. 有编码方式的创建文件 7. 删除文件 8. 删除指 ...
- HDU 4169 Wealthy Family(树形DP)
Problem Description While studying the history of royal families, you want to know how wealthy each ...
- iOS-加载html字符串
NSMutableAttributedString * attrString =[[NSMutableAttributedString alloc] initWithData:[resultModel ...
- TCP系列12—重传—2、Linux超时重传引入示例
在前面我们概述了TCP的超时重传之后我们简单的看一下tcp超时重传的示例.首先简单的描述一下测试过程 1.设置/proc/sys/net/ipv4/tcp_early_retrans为2,关掉TLP功 ...
- 【Linux】- ps -ef |grep 命令
ps:将某个进程显示出来 grep:查找 |:管道命令 表示ps命令与grep同时执行 PS是LINUX下最常用的也是非常强大的进程查看命令 grep命令是查找,是一种强大的文本搜索工具,它能使用正则 ...
- 修改CSV中的某些值
file.csv文件如下,然后对其中某些值进行变换操作,刚学Powershell的时候操作起来很麻烦,现在看来其实就是对于哈希表的操作. col1,col2,col3,col4 text1,text2 ...
- TCP/IP协议与OSI协议
OSI协议是一个理想化的协议,它把网络传输过程分为七层模型,以达到形象化的理解的效果,在实际应用中没有被使用.TCP/IP协议可以看作是它的简化版,是目前应用最广泛的网络协议,许多协议都是以它为基础而 ...
- VBA练习-打开文件,添加选中项,生成新表
学习VBA,正好给财务制作一个小工具: Sub 打开人员信息表() Dim wb As Workbook, c As Integer Set wb = Workbooks.Open(, True) c ...