动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance
引言
二维动态规划中最常见的是棋盘型二维动态规划。
即
func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关
这种情况下,时间复杂度 O(n*n),空间复杂度往往可以优化为O(n)
例题 1
Minimum Path Sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
时间复杂度 O(n*n),空间复杂度O(n)的解法。
这里用了个以前不用的技巧,当想把数组初始化为非0的值时,不用memset,而改用vector表示数组。
class Solution {
public:
int minPathSum(vector<vector<int> > &grid) {
if(grid.size() == || grid[].size() == ) return ;
int H = grid.size(), W = grid[].size();
vector<int> path(W+, INT_MAX);
path[] = ;
for(int i = ; i <= H; ++i)
for(int j = ; j <= W; path[j] = min(path[j-], path[j]) + grid[i-][j-], ++j);
return path[W];
}
};
例题 2
Unique Paths II
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

Above is a 3 x 7 grid. How many possible unique paths are there?
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
Note: m and n will be at most 100.
时间复杂度 O(n*n),空间复杂度O(n)
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
if(obstacleGrid.size() == || obstacleGrid[].size() == ) return ;
int H = obstacleGrid.size(), W = obstacleGrid[].size();
int paths[W+]; memset(paths, , sizeof(paths));
paths[] = (obstacleGrid[][] ? : );
for(int i = ; i <= H; ++i){
for(int j = ; j <= W; ++j){
paths[j] = (obstacleGrid[i-][j-] ? : paths[j-] + paths[j]);
}
}
return paths[W];
}
};
例题 3
很熟悉的 Edit Distance
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
类似的还有http://basicalgos.blogspot.com/上的 53. Edit Distance between strings
这道题目我们要设置两个变量,i和j, E(i, j) 表示word1中以i 结尾的子串到表示word2中以j 结尾的子串的距离。
状态转移方程借助53. Edit Distance between strings上的这张图片来说明:

LeetCode那道题的实现代码,时间复杂度 O(n*n),空间复杂度O(n)
class Solution {
public:
int minDistance(string word1, string word2) {
if(word1.empty() && word2.empty()) return ;
int len1 = word1.length(), len2 = word2.length();
int A[len2+]; int pre;
memset(A, , sizeof(A));
for(int i = ; i <= len1; ++i){
for(int j = ; j <= len2; ++j){
int Min = INT_MAX;
if(i > ) Min = min(A[j]+, Min);
if(j > ) Min = min(A[j-]+, Min);
if(i > && j > ) Min = min(Min, pre+(word1[i-] == word2[j-] ? : ));
if(i == && j == ) Min = ;
pre = A[j];
A[j] = Min;
}
}
return A[len2];
}
};
后记
棋盘型二维动态规划典型的题目还有“寻找最长公共子串(substring)”,“寻找最长公共子序列(subsequence)”。
这些都可以给出时间复杂度 O(n*n),空间复杂度O(n)的解。
动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance的更多相关文章
- LeetCode之“动态规划”:Minimum Path Sum && Unique Paths && Unique Paths II
之所以将这三道题放在一起,是因为这三道题非常类似. 1. Minimum Path Sum 题目链接 题目要求: Given a m x n grid filled with non-negative ...
- 二维动态规划——Interleaving String
97. Interleaving String Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2 ...
- 543A - Writing Code(二维动态规划)
题意:现在要写m行代码,总共有n个文件,现在给出第i个文件每行会出现v[i]个bug,问你在bug少于b的条件下有多少种安排 分析:定义dp[i][j][k],i个文件,用了j行代码,有k个bug 状 ...
- LEETCODE —— Unique Paths II [动态规划 Dynamic Programming]
唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are ...
- poj 2155:Matrix(二维线段树,矩阵取反,好题)
Matrix Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 17880 Accepted: 6709 Descripti ...
- [LeetCode] Unique Paths && Unique Paths II && Minimum Path Sum (动态规划之 Matrix DP )
Unique Paths https://oj.leetcode.com/problems/unique-paths/ A robot is located at the top-left corne ...
- Leetcode之动态规划(DP)专题-63. 不同路径 II(Unique Paths II)
Leetcode之动态规划(DP)专题-63. 不同路径 II(Unique Paths II) 初级题目:Leetcode之动态规划(DP)专题-62. 不同路径(Unique Paths) 一个机 ...
- Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)
Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. ...
- [leetcode]304Range Sum Query 2D - Immutable动态规划计算二维数组中子数组的sum
303一维数组的升级版,方法就是用二维数组res存下从(0,0)到当前位置的sum,存的方法是动态规划,看着二维数组画圈比较好搞清楚其中的加减法 算子数组的sum的时候也是和存差不多的逻辑,就是某一部 ...
随机推荐
- ServiceStack.Ormlit 事务
应该使用这个方法开启事务 public static IDbTransaction OpenTransaction(this IDbConnection dbConn) { return new Or ...
- 家用甲醛pm2.5温湿度传感器实验
最近在装修房子,刷完墙漆铺完了木地板以后,屋里边有很大的味,所以就买了 攀藤科技的PMS5003ST G5ST PM2.5激光粉尘甲醛温湿度三合一传感器,打算自己测一下甲醛浓度,看看什么时候能够入住. ...
- 软件工程 作业part1 自我介绍
自我介绍 老师您好,我叫宋雨,本科在长春理工大学,专业是计算机科学与技术. 1.回想一下你曾经对计算机专业的畅想:当初你是如何做出选择计算机专业的决定?你认为过去接触的课程是否符合你对计算机专业的期待 ...
- UML建模语言入门 -- 静态图详解 类图 对象图 包图 静态图建模实战
发现个好东西思维导图, 最近开始用MindManager整理博客 . 作者 :万境绝尘 转载请注明出处 : http://blog.csdn.net/shulianghan/article/deta ...
- eg_1
1. 编写一个程序,输出一个字符串中的大写英文字母个数,小写英文字母个数以及非英文字母个数. 第一种方法: public class Test { public static void main(St ...
- Swift-重写(Override)
子类可以为继承来的实例方法(instance method),类方法(class method),实例属性(instance property),或附属脚本(subscript)提供自己定制的实现(i ...
- iframe 随内容自适应高度
兼容性好的 html代码: <iframe src="enterprise/enter_edit.aspx" id="mainframe" framebo ...
- CentOS/Linux 开放80、8080端口或者开放某个端口
装载系统的时候只开启了22端口.结果再装完Nginx+php+mysql 后不能访问网站. iptables -L -n 查看防火墙设置发现没开启80端口 由于Linux防火墙默认是关闭的.可以用两种 ...
- sublime text 输入法不跟随光标
1.引子 sublime text 有个BUG,那就是不支持中文的鼠标跟随(和PS类似输入的光标和文字候选框不在一起).如下图: 2.插件 安装IMESupport插件即可插件,这款插件是日本人写的. ...
- return 返回字符串
using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Cons ...