[HNOI2001] 软件开发

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 1938  Solved: 1118
[Submit][Status][Discuss]

Description

某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供一块消毒毛巾,这种消毒毛巾使用一天后必须再做消毒处理后才能使用。消毒方式有两种,A种方式的消毒需要a天时间,B种方式的消毒需要b天(b>a),A种消毒方式的费用为每块毛巾fA, B种消毒方式的费用为每块毛巾fB,而买一块新毛巾的费用为f(新毛巾是已消毒的,当天可以使用);而且f>fA>fB。公司经理正在规划在这n天中,每天买多少块新毛巾、每天送多少块毛巾进行A种消毒和每天送多少块毛巾进行B种消毒。当然,公司经理希望费用最低。你的任务就是:为该软件公司计划每天买多少块毛巾、每天多少块毛巾进行A种消毒和多少毛巾进行B种消毒,使公司在这项n天的软件开发中,提供毛巾服务的总费用最低。

Input

第1行为n,a,b,f,fA,fB. 第2行为n1,n2,……,nn. (注:1≤f,fA,fB≤60,1≤n≤1000)

Output

最少费用

Sample Input

4 1 2 3 2 1
8 2 1 6

Sample Output

38

HINT

 

题解:这个和网络流24题里的餐巾纸那道题一样的,有一个

   显然的贪心,没必要多买,然后

 

 #include<cstring>
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<queue> #define N 1007
#define inf 1000000007
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,a,b,f,fa,fb,S,T;
bool boo[N<<];
int dis[N<<];
int cnt=,hed[N<<],nxt[N<<],rea[N<<],val[N<<],fee[N<<];
struct Node
{
int e,fa;
void init()
{
e=fa=-;
}
}e[N<<]; void add(int u,int v,int z,int w)
{
nxt[++cnt]=hed[u];
hed[u]=cnt;
rea[cnt]=v;
val[cnt]=z;
fee[cnt]=w;
}
void add_two_way(int u,int v,int z,int w)
{
add(u,v,z,w);
add(v,u,,-w);
}
bool Spfa()
{
for (int i=S;i<=T;i++)
dis[i]=inf,e[i].init(),boo[i]=false;
queue<int>q;
q.push(S);boo[S]=true,dis[S]=;
while(!q.empty())
{
int u=q.front();q.pop();
for (int i=hed[u];i!=-;i=nxt[i])
{
int v=rea[i],cost=fee[i];
if (dis[v]>dis[u]+cost&&val[i]>)
{
dis[v]=dis[u]+cost;
e[v].fa=u,e[v].e=i;
if (!boo[v])
{
boo[v]=true;
q.push(v);
}
}
}
boo[u]=false;
}
if (dis[T]!=inf) return true;
else return false;
}
int mfmc()
{
int ans=;
while(Spfa())
{
int x=inf;
for (int i=T;e[i].fa!=-;i=e[i].fa)
x=min(x,val[e[i].e]);
ans+=dis[T]*x;
for (int i=T;e[i].fa!=-;i=e[i].fa)
val[e[i].e]-=x,val[e[i].e^]+=x;
}
return ans;
}
int main()
{
memset(hed,-,sizeof(hed));
n=read(),a=read(),b=read(),f=read(),fa=read(),fb=read();
S=,T=n*+;
for (int i=;i<=n;i++)
{
if (i+a+<=n) add_two_way(i,i+n+a+,inf,fa);
if (i+b+<=n) add_two_way(i,i+n+b+,inf,fb);
if (i+<=n) add_two_way(i,i+,inf,);
}
for (int i=;i<=n;i++)
{
int x=read();
add_two_way(S,i,x,);
add_two_way(S,i+n,x,f);
add_two_way(i+n,T,x,);
}
printf("%d\n",mfmc());
}

bzoj 1221 [HNOI2001] 软件开发 费用流的更多相关文章

  1. BZOJ 1221 [HNOI2001] 软件开发 费用流_建模

    题目描述:   某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供 ...

  2. BZOJ 1221: [HNOI2001] 软件开发(最小费用最大流)

    不知道为什么这么慢.... 费用流,拆点.... --------------------------------------------------------------------------- ...

  3. BZOJ 1221: [HNOI2001] 软件开发

    1221: [HNOI2001] 软件开发 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1428  Solved: 791[Submit][Stat ...

  4. BZOJ 3280: 小R的烦恼 & BZOJ 1221: [HNOI2001] 软件开发

    3280: 小R的烦恼 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 399  Solved: 200[Submit][Status][Discuss ...

  5. [BZOJ 1221] [HNOI2001] 软件开发 【费用流 || 三分】

    题目链接:BZOJ - 1221 题目分析 算法一:最小费用最大流 首先这是一道经典的网络流问题.每天建立两个节点,一个 i 表示使用毛巾,一个 i' 表示这天用过的毛巾. 然后 i 向 T 连 Ai ...

  6. BZOJ 1221: [HNOI2001] 软件开发【最小费用最大流】

    Description 某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员 ...

  7. 【bzoj1221】[HNOI2001] 软件开发 费用流

    题目描述 某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供一块消 ...

  8. BZOJ1221 [HNOI2001]软件开发 - 费用流

    题解 非常显然的费用流. 但是建图还是需要思考的QuQ 将每天分成两个节点 $x_{i,1}, x_{i,2} $, $ x_{i,1}$用于提供服务, $x_{i ,2}$ 用来从源点获得$nd[i ...

  9. BZOJ 1221 [HNOI2001] 软件开发(费用流)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1221 [题目大意] 每天对毛巾都有一定的需求ni,每天可以花f价值每条购买毛巾, 当天 ...

随机推荐

  1. LeetCode 98——验证二叉搜索树

    1. 题目 2. 解答 2.1. 方法一 我们初始化根节点的范围为长整形数据的最小最大值 \([LONG\_MIN,LONG\_MAX]\),则其左子节点的取值范围为 \([LONG\_MIN,根节点 ...

  2. day-16 CNN卷积神经网络算法之Max pooling池化操作学习

    利用CNN卷积神经网络进行训练时,进行完卷积运算,还需要接着进行Max pooling池化操作,目的是在尽量不丢失图像特征前期下,对图像进行downsampling. 首先看下max pooling的 ...

  3. 五:ResourceManager High Availability RM 高可用

    RM有单点失败的风险,但是可以做HA.  RMs HA通过master/standby这种结构实现,一个master是active的,其它standby是inactive的.可能通过命令行切换主备节点 ...

  4. Python字符串中的r前缀

    在Python中,如果字符串的前面有r/R前缀,那么,就会禁用转义符\的功能: >>>path = r'C:\new\text.dat' >>>pah 'C:\\n ...

  5. 软件工程课堂作业(二)续——升级完整版随机产生四则运算题目(C++)

    一.设计思想: 1.根据题目新设要求,我将它们分为两类:一类是用户输入数目,根据这个数目改变一系列后续问题:另一类是用户输入0或1,分情况解决问题. 2.针对这两类要求,具体设计思路已在上篇博文中写出 ...

  6. iOS- UIPickerView餐厅点餐系统

    在餐厅里的点餐系统的核心控件就是UIPickerView 今天晚上在整理以前的项目笔记时,特意把UIPickerView单独拿出来,做了一个简陋的点餐道具. 因为没有素材图片,所有大家将就看看吧 0. ...

  7. Thinkphp5的使用phpmailer实现发邮件功能(163邮箱)

    Thinkphp5本身并没有实现发邮件的功能,至少据我所知. 本文利用网易邮箱作为发邮件的邮箱.作为发送邮件的前提是需要开启SMTP服务,打开网易邮件,点击设置按钮,如下图所示 勾选smtp服务 保存 ...

  8. 【Docker 命令】- build命令

    docker build 命令用于使用 Dockerfile 创建镜像. 语法 docker build [OPTIONS] PATH | URL | - OPTIONS说明: --build-arg ...

  9. oracle 9i 图文安装教程 oracle 9i 安装

    我的安装文件是ISO镜像文件,使用Virtual DAEMON Manager v 4.10打开: ora9i-1.iso ora9i-2.iso ora9i-3.iso 首先必须把上面三个镜像文件都 ...

  10. Visual Studio 数据库架构比较

      一.前言 开发的时候在测试服务器上和线网服务器上面都有我们的数据库,当我们在线网上面修改或者新增一些字段后,线网的数据库也需要更新,这个时候根据表的修改记录,然后在线网上面一个一个增加修改很浪费效 ...