HDU 1014 Uniform Generator(模拟和公式)
传送门:
http://acm.hdu.edu.cn/showproblem.php?pid=1014
Uniform Generator
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 33120 Accepted Submission(s): 13137
seed(x+1) = [seed(x) + STEP] % MOD
where '%' is the modulus operator.
Such a function will generate pseudo-random numbers (seed) between 0 and MOD-1. One problem with functions of this form is that they will always generate the same pattern over and over. In order to minimize this effect, selecting the STEP and MOD values carefully can result in a uniform distribution of all values between (and including) 0 and MOD-1.
For example, if STEP = 3 and MOD = 5, the function will generate the series of pseudo-random numbers 0, 3, 1, 4, 2 in a repeating cycle. In this example, all of the numbers between and including 0 and MOD-1 will be generated every MOD iterations of the function. Note that by the nature of the function to generate the same seed(x+1) every time seed(x) occurs means that if a function will generate all the numbers between 0 and MOD-1, it will generate pseudo-random numbers uniformly with every MOD iterations.
If STEP = 15 and MOD = 20, the function generates the series 0, 15, 10, 5 (or any other repeating series if the initial seed is other than 0). This is a poor selection of STEP and MOD because no initial seed will generate all of the numbers from 0 and MOD-1.
Your program will determine if choices of STEP and MOD will generate a uniform distribution of pseudo-random numbers.
每一个数都出现一次。这样就均等分布了。就打印Good否则就Bad
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n,m,i;
int s[];
while(cin>>n>>m)
{
s[]=;
for(i=;i<m;i++)
s[i]=(s[i-]+n)%m;
sort(s,s+m);
for(i=;i<m;i++)
if(s[i]!=i)
break;
printf("%10d%10d",n,m);
if(i==m)
cout<<" Good Choice"<<endl<<endl;
else
cout<<" Bad Choice"<<endl<<endl;
}
return ;
}
2.公式法
这是网上比较神奇的做法(判断一下两个数是不是互质)
就是比较step和mod的最大公约数是不是1
大佬题解:
本题就是求step和mod如果GCD(最大公约数位1)那么就是Good Choice,否则为Bad Choice
为什么这个结论成立呢?
因为当GCD(step, mod) == 1的时候,那么第一次得到序列:x0, x0 + step, x0 + step…… 那么mod之后,必然下一次重复出现比x0大的数必然是x0+1,为什么呢?
因为(x0 + n*step) % mod; 且不需要考虑x0 % mod的值为多少,因为我们想知道第一次比x0大的数是多少,那么就看n*step%mod会是多少了,因为GCD(step, mod) == 1,那么n*step%mod必然是等于1,故此第一次重复出现比x0大的数必然是x0+1,那么第二次出现比x0大的数必然是x0+2,以此类推,就可得到必然会出现所有0到mod-1的数,然后才会重复出现x0.
当GCD(step, mod) != 1的时候,可以推出肯定跨过某些数了,这里不推了。
然后可以扩展这个结论,比如如果使用函数 x(n) = (x(n-1) * a + b)%mod;增加了乘法因子a,和步长b了;
那么如果是Good Choice,就必然需要GCD(a, mod) == 1,而且GCD(b, mod) == 1;
code:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
int gcd(int a,int b)//最大公约数
{
if (b==)
return a;
return gcd(b, a%b);
}
int main()
{
int n,m;
while(~scanf("%d %d",&n,&m))
{
if(gcd(n,m)==)
printf("%10d%10d Good Choice\n\n",n,m);
else
printf("%10d%10d Bad Choice\n\n",n,m);
}
return ;
}
HDU 1014 Uniform Generator(模拟和公式)的更多相关文章
- HDU 1014 Uniform Generator【GCD,水】
Uniform Generator Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 1014:Uniform Generator
Uniform Generator Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- HDU 1014 Uniform Generator(题解)
Uniform Generator Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- hdu 1014.Uniform Generator 解题报告
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1014 题目意思:给出 STEP 和 MOD,然后根据这个公式:seed(x+1) = [seed(x) ...
- HDU 1014 Uniform Generator 欧几里得
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1014 解题思路: 1. 把题目意思读懂后,明白会输入两个数,然后根据题中的公式产生一系列伪随机数,看这 ...
- HDU 1014 Uniform Generator(最大公约数,周期循环)
#include<iostream> #include <cstdio> #include <cstring> using namespace std; int m ...
- HDU 1014 Uniform Generator 题解
找到规律之后本题就是水题了.只是找规律也不太easy的.证明这个规律成立更加不easy. 本题就是求step和mod假设GCD(最大公约数位1)那么就是Good Choice,否则为Bad Choic ...
- hdu 1014 Uniform Generator 数论
摘取于http://blog.csdn.net/kenden23/article/details/37519883: 找到规律之后本题就是水题了,不过找规律也不太容易的,证明这个规律成立更加不容易. ...
- 1014 Uniform Generator ACM
http://acm.hdu.edu.cn/showproblem.php?pid=1014 题目的英文实在是太多了 ,搞不懂. 最后才知道是用公式seed(x+1) = [seed(x) + STE ...
随机推荐
- 解锁Spring框架姿势1
Spring 介绍:Spring 框架是一个Java平台,它为开发Java应用程序提供全面的基础架构支持.Spring负责基础架构,因此您可以专注于应用程序的开发. Spring可以让您从" ...
- Ubuntu 16.04 开启BBR加速
BBR(Bottleneck Bandwidth and RTT)是Google推出的一个提高网络利用率的算法,可以对网络进行加速,用来干什么大家心里都有B数 Ubuntu开启BBR的前提是内核版本必 ...
- UNION ALL 视图 'ImprotHIS2012.dbo.ImportHISData' 不可更新,因为没有找到分区依据列。 Severity 16 State 12
-- 3 更正措施,使约束check一次 Alter Table ImprotHIS_Bak_2011.dbo.ImportHISData with check Check Constraint al ...
- 解决Openwrt安装插件提示一下错误的办法
解决Openwrt安装插件提示一下错误的办法 Openwrt安装17ce插件,提示一下错误: Collected errors: * check_data_file_clashes: Package ...
- 用CSS隐藏页面元素的5种方法
1.opacity设置一个元素的透明度只是从视觉上隐藏元素,对页面布局还是有影响,读屏软件会原样读出 2.visibility设置为hidden将隐藏我们的元素,对网页布局还是起作用,子元素也会被隐藏 ...
- 基于容器微服务的PaaS云平台设计(一) 实现容器微服务和持续集成
版权声明:本文为博主原创文章,欢迎转载,转载请注明作者.原文超链接 ,博主地址:http://www.cnblogs.com/SuperXJ/ 前言:关于什么是容器微服务PaaS和容器微服务PaaS的 ...
- android的系统设置界面
Intent 的 意图: Intent intent = new Inetnt(Setings); Setings: 1. ACTION_ACCESSIBILITY_SETTINGS : // 跳 ...
- SQL点点滴滴_UPDATE小计
1.更新tb_card中c_customer字段的值等于tb_customer表中c_no的值 update tb_card set c_customer=ct.c_no from tb_custom ...
- 【Leetcode】【Easy】Path Sum
Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...
- 手工执行sql tuning advisor和sql access advisor
sql tuning advisor:创建任务DECLARE my_task_name VARCHAR2(30); my_sqltext CLOB; BEGIN my_sqltext := 'SELE ...