定义

问题开始之前先解释下流处理中的一些概念:

  • At most once - 每条数据最多被处理一次(0次或1次)

  • At least once - 每条数据最少被处理一次 (1次或更多)

  • Exactly once - 每条数据只会被处理一次(没有数据会丢失,并且没有数据会被多次处理)

High Level API

 

如果不做容错,将会带来数据丢失
因为receiver一直在接收数据,在其没有处理的时候(已通知zk数据接收到),executor突然挂掉(或是driver挂掉通知executor关闭),缓存在其中的数据就会丢失。

因为这个问题,Spark1.2开始加入了WAL(Write ahead log)
开启 WAL,将receiver获取数据的存储级别修改为StorageLevel.MEMORY_AND_DISK_SER

val conf = new SparkConf()
conf.set("spark.streaming.receiver.writeAheadLog.enable","true")
val sc= new SparkContext(conf)
val ssc = new StreamingContext(sc,Seconds(5))
ssc.checkpoint("walDir")
val lines = KafkaUtils.createStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topicMap, StorageLevel.MEMORY_AND_DISK_SER).map(_._2)

开启WAL后,依旧存在数据丢失问题
即使按官方说的设置了WAL,依旧会有数据丢失,这是为什么?因为在任务中断时receiver也被强行终止了,将会造成数据丢失,提示如下:

ERROR ReceiverTracker: Deregistered receiver for stream 0: Stopped by driver
WARN BlockGenerator: Cannot stop BlockGenerator as its not in the Active state [state = StoppedAll]
WARN BatchedWriteAheadLog: BatchedWriteAheadLog Writer queue interrupted.

在Streaming程序的最后添加代码,只有在确认所有receiver都关闭的情况下才终止程序。

sys.addShutdownHook({
 ssc.stop(true,true)})

调用的方法为:

def stop(stopSparkContext: Boolean, stopGracefully: Boolean): Unit

WAL带来的问题

WAL实现的是At-least-once语义。
如果在写入到外部存储的数据还没有将offset更新到zookeeper就挂掉,这些数据将会被反复消费。同时,降低了程序的吞吐量。

Kafka Direct API

Kafka direct API 的运行方式,将不再使用receiver来读取数据,也不用使用WAL机制。

同时保证了exactly-once语义,不会在WAL中消费重复数据。不过需要自己完成将offset写入zk的过程,在官方文档中都有相应介绍。
例如如下的调用方式:

messages.foreachRDD(rdd=>{   val message = rdd.map(_._2)  //对数据进行一些操作
  message.map(method)//更新zk上的offset (自己实现)
  updateZKOffsets(rdd)
})

160728、Spark Streaming kafka 实现数据零丢失的几种方式的更多相关文章

  1. Spark Streaming使用Kafka保证数据零丢失

    来自: https://community.qingcloud.com/topic/344/spark-streaming使用kafka保证数据零丢失 spark streaming从1.2开始提供了 ...

  2. Spark Streaming消费Kafka Direct方式数据零丢失实现

    使用场景 Spark Streaming实时消费kafka数据的时候,程序停止或者Kafka节点挂掉会导致数据丢失,Spark Streaming也没有设置CheckPoint(据说比较鸡肋,虽然可以 ...

  3. 通过Spark Streaming处理交易数据

    Apache Spark 是加州大学伯克利分校的 AMPLabs 开发的开源分布式轻量级通用计算框架. 由于 Spark 基于内存设计,使得它拥有比 Hadoop 更高的性能(极端情况下可以达到 10 ...

  4. spark streaming读取kakfka数据手动维护offset

    在spark streaming读取kafka的数据中,spark streaming提供了两个接口读取kafka中的数据,分别是KafkaUtils.createDstream,KafkaUtils ...

  5. Spark Streaming + Kafka整合(Kafka broker版本0.8.2.1+)

    这篇博客是基于Spark Streaming整合Kafka-0.8.2.1官方文档. 本文主要讲解了Spark Streaming如何从Kafka接收数据.Spark Streaming从Kafka接 ...

  6. 4、spark streaming+kafka

    一.Receiver模式 1. receiver模式原理图 在SparkStreaming程序运行起来后,Executor中会有receiver tasks接收kafka推送过来的数据.数据会被持久化 ...

  7. Spark踩坑记——Spark Streaming+Kafka

    [TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark strea ...

  8. Spark Streaming+Kafka

    Spark Streaming+Kafka 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端, ...

  9. spark streaming - kafka updateStateByKey 统计用户消费金额

    场景 餐厅老板想要统计每个用户来他的店里总共消费了多少金额,我们可以使用updateStateByKey来实现 从kafka接收用户消费json数据,统计每分钟用户的消费情况,并且统计所有时间所有用户 ...

随机推荐

  1. oracle聚合函数及行专列,pivot rollup cube

    1.原始数据 --方法-: --以单位分组,计算每类特殊情况的合计以及按照单位的小计数 with a as (SELECT b.szfz, case  when tsqk is not null th ...

  2. Normalize.css做了哪些事情--看代码

    博主说:本博客文章来源包括转载,翻译,原创,且在文章内均有标明.鼓励原创,支持创作共享,请勿用于商业用途,转载请注明文章链接.本文链接:http://www.kein.pw/?p=80 /*! nor ...

  3. JS高程3:函数表达式

    定义函数的方式有2种: 函数声明 函数表达式 函数声明是最常用的,函数声明的一个特征就是:在执行代码之前,就已经读取了函数声明. 这个特征还有一个专门的术语:函数声明提升. 递归函数 所谓递归函数,就 ...

  4. 快速解读GC日志

    本文是 Plumbr 发行的 Java垃圾收集指南 的部分内容.文中将介绍GC日志的输出格式, 以及如何解读GC日志, 从中提取有用的信息.我们通过 -XX:+UseSerialGC 选项,指定JVM ...

  5. 0054 Spring MVC的@Controller和@RequestMapping注解

    @Controller注解 该注解用来指示一个类是一个控制器,在Spring的配置xml文件中开启注解扫描 <context:conponent-scan base-package=" ...

  6. MapReduce编程实例3

    MapReduce编程实例: MapReduce编程实例(一),详细介绍在集成环境中运行第一个MapReduce程序 WordCount及代码分析 MapReduce编程实例(二),计算学生平均成绩 ...

  7. SQLi-Labs学习笔记

    结构化查询语言,也叫做SQL,从根本上说是一种处理数据库的编程语言.对于初学者,数据库仅仅是在客户端和服务端进行数据存储.SQL通过结构化查询,关系,面向对象编程等等来管理数据库.编程极客们总是搞出许 ...

  8. FastDFS 常见问题

    FastDFS 常见问题 Q:/fdfs_trackerd: error while loading shared libraries: libevent-1.4.so.2: cannot open ...

  9. python网络编程学习笔记(10):webpy框架

    转载请注明:@小五义http://www.cnblogs.com/xiaowuyi django和webpy都是python的web开发框架.Django的主要目的是简便.快速的开发数据库驱动的网站. ...

  10. MySQL定义异常和异常处理方法

    在MySQL中.特定异常须要特定处理.这些异常可以联系到错误,以及子程序中的一般流程控制.定义异常是事先定义程序运行过程中遇到的问题,异常处理定义了在遇到问题时相应当採取的处理方式.而且保证存储过程或 ...