定义

问题开始之前先解释下流处理中的一些概念:

  • At most once - 每条数据最多被处理一次(0次或1次)

  • At least once - 每条数据最少被处理一次 (1次或更多)

  • Exactly once - 每条数据只会被处理一次(没有数据会丢失,并且没有数据会被多次处理)

High Level API

 

如果不做容错,将会带来数据丢失
因为receiver一直在接收数据,在其没有处理的时候(已通知zk数据接收到),executor突然挂掉(或是driver挂掉通知executor关闭),缓存在其中的数据就会丢失。

因为这个问题,Spark1.2开始加入了WAL(Write ahead log)
开启 WAL,将receiver获取数据的存储级别修改为StorageLevel.MEMORY_AND_DISK_SER

val conf = new SparkConf()
conf.set("spark.streaming.receiver.writeAheadLog.enable","true")
val sc= new SparkContext(conf)
val ssc = new StreamingContext(sc,Seconds(5))
ssc.checkpoint("walDir")
val lines = KafkaUtils.createStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topicMap, StorageLevel.MEMORY_AND_DISK_SER).map(_._2)

开启WAL后,依旧存在数据丢失问题
即使按官方说的设置了WAL,依旧会有数据丢失,这是为什么?因为在任务中断时receiver也被强行终止了,将会造成数据丢失,提示如下:

ERROR ReceiverTracker: Deregistered receiver for stream 0: Stopped by driver
WARN BlockGenerator: Cannot stop BlockGenerator as its not in the Active state [state = StoppedAll]
WARN BatchedWriteAheadLog: BatchedWriteAheadLog Writer queue interrupted.

在Streaming程序的最后添加代码,只有在确认所有receiver都关闭的情况下才终止程序。

sys.addShutdownHook({
 ssc.stop(true,true)})

调用的方法为:

def stop(stopSparkContext: Boolean, stopGracefully: Boolean): Unit

WAL带来的问题

WAL实现的是At-least-once语义。
如果在写入到外部存储的数据还没有将offset更新到zookeeper就挂掉,这些数据将会被反复消费。同时,降低了程序的吞吐量。

Kafka Direct API

Kafka direct API 的运行方式,将不再使用receiver来读取数据,也不用使用WAL机制。

同时保证了exactly-once语义,不会在WAL中消费重复数据。不过需要自己完成将offset写入zk的过程,在官方文档中都有相应介绍。
例如如下的调用方式:

messages.foreachRDD(rdd=>{   val message = rdd.map(_._2)  //对数据进行一些操作
  message.map(method)//更新zk上的offset (自己实现)
  updateZKOffsets(rdd)
})

160728、Spark Streaming kafka 实现数据零丢失的几种方式的更多相关文章

  1. Spark Streaming使用Kafka保证数据零丢失

    来自: https://community.qingcloud.com/topic/344/spark-streaming使用kafka保证数据零丢失 spark streaming从1.2开始提供了 ...

  2. Spark Streaming消费Kafka Direct方式数据零丢失实现

    使用场景 Spark Streaming实时消费kafka数据的时候,程序停止或者Kafka节点挂掉会导致数据丢失,Spark Streaming也没有设置CheckPoint(据说比较鸡肋,虽然可以 ...

  3. 通过Spark Streaming处理交易数据

    Apache Spark 是加州大学伯克利分校的 AMPLabs 开发的开源分布式轻量级通用计算框架. 由于 Spark 基于内存设计,使得它拥有比 Hadoop 更高的性能(极端情况下可以达到 10 ...

  4. spark streaming读取kakfka数据手动维护offset

    在spark streaming读取kafka的数据中,spark streaming提供了两个接口读取kafka中的数据,分别是KafkaUtils.createDstream,KafkaUtils ...

  5. Spark Streaming + Kafka整合(Kafka broker版本0.8.2.1+)

    这篇博客是基于Spark Streaming整合Kafka-0.8.2.1官方文档. 本文主要讲解了Spark Streaming如何从Kafka接收数据.Spark Streaming从Kafka接 ...

  6. 4、spark streaming+kafka

    一.Receiver模式 1. receiver模式原理图 在SparkStreaming程序运行起来后,Executor中会有receiver tasks接收kafka推送过来的数据.数据会被持久化 ...

  7. Spark踩坑记——Spark Streaming+Kafka

    [TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark strea ...

  8. Spark Streaming+Kafka

    Spark Streaming+Kafka 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端, ...

  9. spark streaming - kafka updateStateByKey 统计用户消费金额

    场景 餐厅老板想要统计每个用户来他的店里总共消费了多少金额,我们可以使用updateStateByKey来实现 从kafka接收用户消费json数据,统计每分钟用户的消费情况,并且统计所有时间所有用户 ...

随机推荐

  1. REMOTE HOST IDENTIFICATION HAS CHANGED问题的解决方式

    好久没更新博客园. 这段没更新博客的时间内收获了很多,所以更新下博客来整理.记录这段时间内学到的内容. 最近腾讯云服务器欠费停机了,所以趁着缴费.趁着心血来潮就……重装了云系统.结果在进行远程ssh连 ...

  2. Paper Reading 1 - Playing Atari with Deep Reinforcement Learning

    来源:NIPS 2013 作者:DeepMind 理解基础: 增强学习基本知识 深度学习 特别是卷积神经网络的基本知识 创新点:第一个将深度学习模型与增强学习结合在一起从而成功地直接从高维的输入学习控 ...

  3. Atitit. 衡量项目规模 ----包含的类的数量 .net java类库包含多少类 多少个api方法??

    Atitit. 衡量项目规模 ----包含的类的数量 .net java类库包含多少类 多少个api方法?? 1 framework 4.5 (10万个api)1 2 Jdk8   57M1 3 Gi ...

  4. [css]margin-top重叠

  5. ubuntu MySQL数据库输入中文乱码 解决方案

    一.登录MySQL查看用SHOW VARIABLES LIKE ‘character%’;下字符集,显示如下:+--------------------------+----------------- ...

  6. linux 查找文件并移动

     find . -name '10-*.dat' -exec mv {} ../ \; 这里:  => -exec mv {} /mnt/mp3 \; - 运行mv命令.  => {} ...

  7. MapReduce编程实例2

    MapReduce编程实例: MapReduce编程实例(一),详细介绍在集成环境中运行第一个MapReduce程序 WordCount及代码分析 MapReduce编程实例(二),计算学生平均成绩 ...

  8. ECMall中Widgets模式的布局引擎

    自己做过框架的人,可能都会思考一个问题,模板引擎需要什么特性? Widgets模式,很多系统中都有出现,但对于纯开发人员,不管前端或后台人员来说,都觉得稍微麻烦了一点.因为他将界面硬生生的拆分出了很多 ...

  9. Centos版本 32或64位查看命令

    [root@root nginx]# uname -a Linux root -.el6.x86_64 # SMP Fri Nov :: UTC x86_64 x86_64 x86_64 GNU/Li ...

  10. 理解Java中字符流与字节流

    1. 什么是流 Java中的流是对字节序列的抽象,我们可以想象有一个水管,只不过现在流动在水管中的不再是水,而是字节序列.和水流一样,Java中的流也具有一个"流动的方向",通常可 ...