Cellular Automaton

Time Limit: 12000MS Memory Limit: 65536K

Total Submissions: 3504 Accepted: 1421

Case Time Limit: 2000MS

Description

A cellular automaton is a collection of cells on a grid of specified shape that evolves through a number of discrete time steps according to a set of rules that describe the new state of a cell based on the states of neighboring cells. The order of the cellular automaton is the number of cells it contains. Cells of the automaton of order n are numbered from 1 to n.

The order of the cell is the number of different values it may contain. Usually, values of a cell of order m are considered to be integer numbers from 0 to m − 1.

One of the most fundamental properties of a cellular automaton is the type of grid on which it is computed. In this problem we examine the special kind of cellular automaton — circular cellular automaton of order n with cells of order m. We will denote such kind of cellular automaton as n,m-automaton.

A distance between cells i and j in n,m-automaton is defined as min(|i − j|, n − |i − j|). A d-environment of a cell is the set of cells at a distance not greater than d.

On each d-step values of all cells are simultaneously replaced by new values. The new value of cell i after d-step is computed as a sum of values of cells belonging to the d-enviroment of the cell i modulo m.

The following picture shows 1-step of the 5,3-automaton.

The problem is to calculate the state of the n,m-automaton after k d-steps.

Input

The first line of the input file contains four integer numbers n, m, d, and k (1 ≤ n ≤ 500, 1 ≤ m ≤ 1 000 000, 0 ≤ d < n⁄2 , 1 ≤ k ≤ 10 000 000). The second line contains n integer numbers from 0 to m − 1 — initial values of the automaton’s cells.

Output

Output the values of the n,m-automaton’s cells after k d-steps.

Sample Input

sample input #1

5 3 1 1

1 2 2 1 2

sample input #2

5 3 1 10

1 2 2 1 2

Sample Output

sample output #1

2 2 2 2 1

sample output #2

2 0 0 2 2

这道题目的矩阵好找,但是由于n比较大,用n*n的矩阵再加上快速幂,是O(n^3*log k) 回超时。观察矩阵,发现矩阵是一个循环矩阵,无论矩阵取多少次方,矩阵的每一行相当于第一行向后推了一步,所以说是循环矩阵,这样我们只要计算矩阵的第一行就可以知道矩阵的其他行,所以只开一维数组效率就是O(n^2log k)

#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h> using namespace std;
typedef long long int LL;
int n,m,d,k;
struct Node
{
LL a[505];
};
Node multiply(Node a,Node b)
{
Node c;
memset(c.a,0,sizeof(c.a));
for(int i=0;i<n;i++)
{
int cnt=(n-i)%n;
for(int j=0;j<n;j++)
{
(c.a[i]+=(a.a[j]*b.a[cnt++])%m)%=m;
if(cnt==n) cnt=0;
}
}
return c;
}
Node get(Node a,int x)
{
Node c;
memset(c.a,0,sizeof(c.a));
c.a[0]=1;
for(x;x;x>>=1)
{
if(x&1) c=multiply(c,a);
a=multiply(a,a);
}
return c;
}
int main()
{
scanf("%d%d%d%d",&n,&m,&d,&k);
Node a;Node b;
memset(a.a,0,sizeof(a.a));
memset(b.a,0,sizeof(b.a));
for(int i=0;i<n;i++)
scanf("%lld",&b.a[i]);
a.a[0]=1;
for(int i=1;i<=d;i++)
a.a[i]=a.a[n-i]=1;
a=get(a,k);
a=multiply(b,a);
for(int i=0;i<n;i++)
if(i==n-1) printf("%lld\n",a.a[i]);
else printf("%lld ",a.a[i]);
return 0;
}

POJ 3150 Cellular Automaton(矩阵快速幂)的更多相关文章

  1. POJ 3150 Cellular Automaton --矩阵快速幂及优化

    题意:给一个环,环上有n块,每块有个值,每一次操作是对每个点,他的值变为原来与他距离不超过d的位置的和,问k(10^7)次操作后每块的值. 解法:一看就要化为矩阵来做,矩阵很好建立,大白书P157页有 ...

  2. [POJ 3150] Cellular Automaton (矩阵高速幂 + 矩阵乘法优化)

    Cellular Automaton Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 3048   Accepted: 12 ...

  3. POJ 3150 Cellular Automaton(矩阵高速幂)

    题目大意:给定n(1<=n<=500)个数字和一个数字m,这n个数字组成一个环(a0,a1.....an-1).假设对ai进行一次d-step操作,那么ai的值变为与ai的距离小于d的全部 ...

  4. poj 3070 && nyoj 148 矩阵快速幂

    poj 3070 && nyoj 148 矩阵快速幂 题目链接 poj: http://poj.org/problem?id=3070 nyoj: http://acm.nyist.n ...

  5. poj 3070 Fibonacci(矩阵快速幂,简单)

    题目 还是一道基础的矩阵快速幂. 具体的居者的幂公式我就不明示了. #include<stdio.h> #include<string.h> #include<algor ...

  6. POJ 3070 Fibonacci(矩阵快速幂)

    题目链接 题意 : 用矩阵相乘求斐波那契数的后四位. 思路 :基本上纯矩阵快速幂. #include <iostream> #include <cstring> #includ ...

  7. poj 2778 AC自动机+矩阵快速幂

    题目链接:https://vjudge.net/problem/POJ-2778 题意:输入n和m表示n个病毒,和一个长为m的字符串,里面只可以有'A','C','G','T' 这四个字符,现在问这个 ...

  8. Scout YYF I POJ - 3744(概率dp + 矩阵快速幂)

    题意: 一条路上有n个地雷,你从1开始走,单位时间内有p的概率走一步,1-p的概率走两步,问安全通过这条路的概率 解析: 很容易想到 dp[i] = p * dp[i-1] + (1 - p) * d ...

  9. POJ 3070 Fibonacci 【矩阵快速幂】

    <题目链接> Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 ...

  10. POJ 3734 Blocks (矩阵快速幂)

    题目链接 Description Panda has received an assignment of painting a line of blocks. Since Panda is such ...

随机推荐

  1. Machine-wide Progress Telerik Fiddler installation has been found at ...Please, use that one or uninstall it ...

    问题描述:无法安装Fiddle,提示已有Fiddle,但是却找不到. 打开Fiddle,提示“Machine-wide Progress Telerik Fiddler installation ha ...

  2. CentOS — MySQL备份 Shell 脚本

    原文链接:http://www.cnblogs.com/bruceleeliya/archive/2012/05/04/2482733.html 新建一个 Shell 脚本文件 vi /home/wo ...

  3. offsetof宏的实现

    1.c语言的结构体中,因为字节对齐的问题,导致成员地址并不能根据类型的大小进行计算.例如: struct test { char ch; int a; } printf("test的大小=% ...

  4. atitit..国富论 在现代it企业项目管理中的作用attialx 总结---国富论读后感 attialx

    atitit..国富论 在现代it企业项目管理中的作用attialx 总结---国富论读后感 attialx 1. 国民财富的性质和原因的研究(简称:<国富论>) 1 2. 蕴含的重要管理 ...

  5. flink checkpoint 源码分析 (二)

    转发请注明原创地址http://www.cnblogs.com/dongxiao-yang/p/8260370.html flink checkpoint 源码分析 (一)一文主要讲述了在JobMan ...

  6. java printf long

    System.out.printf("%d\n", 1000000000000000000L); 

  7. redis-cli 常用命令

    1.连接操作相关的命令 quit:关闭连接(connection) auth:简单密码认证 2.对value操作的命令 exists(key):确认一个key是否存在 del(key):删除一个key ...

  8. vim搜索设置高亮

    vim搜索设置高亮 linux vim打开文档搜索字符串时,设置被搜索到字符串高亮显示. 有两种方法: 1.暂时设置:vim打开文档-->命令行形式输入set hlsearch. 缺点:关闭文档 ...

  9. Caffe在以下环境安装:Win10+CUDA8.0+Cudnn5.0+VS2013+Matlab2016a(转载)

    Caffe在以下环境安装:Win10+CUDA8.0+Cudnn5.0+VS2013+Matlab2016a 最近于导师要求下,从头学习Caffe.之前接触了CNN进行了图片分类,后导师提起过Caff ...

  10. 真正解决 Android Studio无法启动,gradle下载不了 提示“building “ 项目名”gradle project info”(原创20131216)

    最近开始研究Android Studio 开发,但是在开始的时候,一直下载gradle,弄了四天,都没有成功,什么FQ,什么设置gradle路径,都没有解决,但是有一次在公司的电脑上很成功的更新了,完 ...