Bzoj1015/洛谷P1197 [JSOI2008]星球大战(并查集)
题面
题解
考虑离线做法,逆序处理,一个一个星球的加入。用并查集维护一下连通性就好了。
具体来说,先将被消灭的星球储存下来,先将没有被消灭的星球用并查集并在一起,这样做可以路径压缩,然后再将被消灭的星球倒着一个一个加入,然后在$union$的时候,如果两个元素不在同一个集合中,答案减一(最初答案为$n$),将每一阶段的答案存下来就行了。
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using std::min; using std::max;
using std::swap; using std::sort;
typedef long long ll;
const int N = 4e5 + 10, M = 2e5 + 10;
int n, m, from[N], fa[N], ans[N], top, ret;
bool vis[N];
struct Edge { int to, nxt; } e[M << 1]; int cnt;
inline void addEdge(int u, int v) {
e[++cnt] = (Edge){v, from[u]}, from[u] = cnt;
}
int bro[N], k;
template<typename T>
void read(T &x) {
x = 0; char ch = getchar();
while(ch < '0' || ch > '9') ch = getchar();
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar();
}
int find(int x) { return fa[x] == x ? x : (fa[x] = find(fa[x])); }
void unionn(int x, int y) { //x -> y;
int fx = find(x), fy = find(y);
if(fx != fy) --ret, fa[fx] = fy;
}
int main () {
#ifdef OFFLINE_JUDGE
freopen("233.in", "r", stdin);
freopen("233.out", "w", stdout);
#endif
read(n), read(m), ret = n;
for(int i = 0; i < n; ++i) fa[i] = i;
for(int i = 1, u, v; i <= m; ++i) {
read(u), read(v);
addEdge(u, v), addEdge(v, u);
} read(k), top = k;
for(int i = 1; i <= k; ++i)
read(bro[i]), vis[bro[i]] = true;
for(int u = 0; u < n; ++u)
if(!vis[u])
for(int i = from[u]; i; i = e[i].nxt)
if(!vis[e[i].to])
unionn(u, e[i].to);
ans[top--] = ret;
for(int i = k; i >= 1; --i) {
int u = bro[i];
for(int i = from[u]; i; i = e[i].nxt)
if(!vis[e[i].to])
unionn(u, e[i].to);
vis[u] = false, ans[top--] = ret;
}
for(int i = 0; i <= k; ++i)
printf("%d\n", ans[i] - i);
return 0;
}
Bzoj1015/洛谷P1197 [JSOI2008]星球大战(并查集)的更多相关文章
- 洛谷P1197 [JSOI2008] 星球大战 [并查集]
题目传送门 星球大战 题目描述 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治者整个星系. 某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球.这 ...
- 洛谷 P1197 [JSOI2008]星球大战——并查集
先上一波题目 https://www.luogu.org/problem/P1197 很明显删除的操作并不好处理 那么我们可以考虑把删边变成加边 只需要一波时间倒流就可以解决拉 储存删边顺序倒过来加边 ...
- 洛谷P1197 [JSOI2008]星球大战
题目 由于题目不要求强制在线,所以可以离线. 而离线的话就会带来许多便利,所以我们可以先处理出全部打击后的图,通过并查集来判断是否连通. 然后再从后往前枚举,得出答案 #include <bit ...
- 洛谷 P1197 [JSOI2008]星球大战
题目描述 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治者整个星系.某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球.这些星球通过特殊的以太隧道 ...
- P1197 [JSOI2008]星球大战[并查集+图论]
题目来源:洛谷 题目描述 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治着整个星系. 某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球.这些星球 ...
- P1197 [JSOI2008]星球大战 并查集 反向
题目描述 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治着整个星系. 某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球.这些星球通过特殊的以太隧 ...
- BZOJ1015或洛谷1197 [JSOI2008]星球大战
BZOJ原题链接 洛谷原题链接 发现正着想毫无思路,所以我们可以考虑倒着思考,把摧毁变成建造. 这样很容易想到用并查集来维护连通块,问题也变的很简单了. 建原图,先遍历一遍所有边,若某条边的两端点未被 ...
- [bzoj1015][JSOI2008]星球大战——并查集+离线处理
题解 给定一张图,支持删点和询问连通块个数 按操作顺序处理的话要在删除点的同时维护图的形态(即图具体的连边情况),这是几乎不可做的 我们发现,这道题可以先读入操作,把没删的点的边先连上,然后再倒序处理 ...
- 洛谷 1197 [JSOI2008]星球大战
[题解] 把询问离线,倒着加点,并查集维护连通性即可. #include<cstdio> #include<cstring> #include<algorithm> ...
随机推荐
- UVA 1213 Sum of Different Primes
https://vjudge.net/problem/UVA-1213 dp[i][j][k] 前i个质数里选j个和为k的方案数 枚举第i个选不选转移 #include<cstdio> # ...
- jenkins slave agent 当作服务运行
1. 接上边编辑好文件 2. 双击以上的jnlp文件 3. 点击弹出的窗口File->save as service, 此时如果报错的话很可能是由于没有安装.net(.net2 以上) 4. 保 ...
- 【BZOJ】1705: [Usaco2007 Nov]Telephone Wire 架设电话线
[题意]给定一排n根杆高度hi,一个常数C,杆升高x的代价为x^2,相邻两杆之间架设电话线代价为高度差*C,求总代价最小. [算法]DP+辅助数组优化 [题解]令f[i][j]表示第i根杆高度为j的最 ...
- performSelector支持多参数
默认的performSelector支持最多传递两个参数,要想传递超过两个的参数,需要使用NSInvocation来模拟performSelector的行为,如下: - (id)performSele ...
- (转)matlab练习程序(HOG方向梯度直方图)
matlab练习程序(HOG方向梯度直方图)http://www.cnblogs.com/tiandsp/archive/2013/05/24/3097503.html HOG(Histogram o ...
- Spring cookie 实战(山东数漫江湖)
Cookie是什么 简单来说,cookie就是浏览器储存在用户电脑上的一小段文本文件.cookie 是纯文本格式,不包含任何可执行的代码.一个web页面或服务器告知浏览器按照一定规范来储存这些信息,并 ...
- 【CSS】凹槽的写法
效果图: 实例代码: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> &l ...
- JAVA 非对称加密算法RSA
非对称加密算法 RSA过程 : 以甲乙双方为例 1.初始化密钥 构建密钥对,生成公钥.私钥保存到keymap中 KeyPairGenerator ---> KeyPair --> RSAP ...
- css文本垂直水平居中
一.单行文本居中 .content{ height:100px; line-height:100px; text-align:center; border:1px solid red; } 效果图 二 ...
- Python3 高阶函数
高阶函数 (满足其一就是:(1)一个函数名作为另一个函数的形参:(2)返回值包含函数名;不修改函数的调用方式) 1.一个函数名作为另一个函数的形参 输出结果: 2.返回值包含函数名;不修改函数的 输出 ...