LA3263 That Nice Euler Circuits
题意
分析
欧拉定理:设平面内顶点数、边数、面数分别为\(V,E,F\),则\(V+F-E=2\)。
枚举每对线段求交点,注意去重。
另外注意第n个端点和第一个端点重合。
时间复杂度\(o(T n^3)\)。
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<ctime>
#include<cstring>
#define rg register
#define il inline
#define co const
template<class T>il T read()
{
rg T data=0;
rg int w=1;
rg char ch=getchar();
while(!isdigit(ch))
{
if(ch=='-')
w=-1;
ch=getchar();
}
while(isdigit(ch))
{
data=data*10+ch-'0';
ch=getchar();
}
return data*w;
}
template<class T>T read(T&x)
{
return x=read<T>();
}
using namespace std;
typedef long long ll;
co double eps=1e-10;
int dcmp(double x)
{
if(fabs(x)<eps)
return 0;
else
return x<0?-1:1;
}
struct Point
{
double x,y;
Point(double x=0,double y=0)
:x(x),y(y){}
bool operator<(co Point&rhs)co
{
return x<rhs.x||(x==rhs.x&&y<rhs.y);
}
bool operator==(co Point&rhs)co
{
return dcmp(x-rhs.x)==0&&dcmp(y-rhs.y)==0;
}
};
typedef Point Vector;
Vector operator+(Vector A,Vector B)
{
return Vector(A.x+B.x,A.y+B.y);
}
Vector operator-(Point A,Point B)
{
return Vector(A.x-B.x,A.y-B.y);
}
Vector operator*(Vector A,double p)
{
return Vector(A.x*p,A.y*p);
}
Vector operator/(Vector A,double p)
{
return Vector(A.x/p,A.y/p);
}
double Dot(Vector A,Vector B)
{
return A.x*B.x+A.y*B.y;
}
double Length(Vector A)
{
return sqrt(Dot(A,A));
}
double Angle(Vector A,Vector B)
{
return acos(Dot(A,B)/Length(A)/Length(B));
}
double Cross(Vector A,Vector B)
{
return A.x*B.y-A.y*B.x;
}
double Area2(Point A,Point B,Point C)
{
return Cross(B-A,C-A);
}
Vector Rotate(Vector A,double rad)
{
return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
}
Vector Normal(Vector A)
{
double L=Length(A);
return Vector(-A.y/L,A.x/L);
}
Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)
{
Vector u=P-Q;
double t=Cross(w,u)/Cross(v,w);
return P+v*t;
}
double DistanceToLine(Point P,Point A,Point B)
{
Vector v1=B-A,v2=P-A;
return fabs(Cross(v1,v2))/Length(v1);
}
double DistanceToSegment(Point P,Point A,Point B)
{
if(A==B)
return Length(P-A);
Vector v1=B-A,v2=P-A,v3=P-B;
if(dcmp(Dot(v1,v2))<0)
return Length(v2);
if(dcmp(Dot(v1,v3))>0)
return Length(v3);
return DistanceToLine(P,A,B);
}
Point GetLineProjection(Point P,Point A,Point B)
{
Vector v=B-A;
return A+v*(Dot(v,P-A)/Dot(v,v));
}
bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)
{
double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1),
c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
return dcmp(c1)*dcmp(c2)<0&&dcmp(c3)*dcmp(c4)<0;
}
bool OnSegment(Point p,Point a1,Point a2)
{
return dcmp(Cross(a1-p,a2-p))==0&&dcmp(Dot(a1-p,a2-p))<0;
}
double PolygonArea(Point*p,int n)
{
double area=0;
for(int i=1;i<n-1;++i)
area+=Cross(p[i]-p[0],p[i+1]-p[0]);
return area/2;
}
co int N=300;
Point P[N],V[N*N];
int main()
{
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
int n,kase=0;
while(read(n))
{
for(int i=0;i<n;++i)
{
read(P[i].x);read(P[i].y);
V[i]=P[i];
}
--n;
int c=n,e=n;
for(int i=0;i<n;++i)
for(int j=i+1;j<n;++j)
if(SegmentProperIntersection(P[i],P[i+1],P[j],P[j+1]))
V[c++]=GetLineIntersection(P[i],P[i+1]-P[i],P[j],P[j+1]-P[j]);
sort(V,V+c);
c=unique(V,V+c)-V;
for(int i=0;i<c;++i)
for(int j=0;j<n;++j)
if(OnSegment(V[i],P[j],P[j+1]))
++e;
printf("Case %d: There are %d pieces.\n",++kase,e+2-c);
}
return 0;
}
LA3263 That Nice Euler Circuits的更多相关文章
- That Nice Euler Circuit(LA3263+几何)
That Nice Euler Circuit Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu D ...
- UVALive - 3263 That Nice Euler Circuit (几何)
UVALive - 3263 That Nice Euler Circuit (几何) ACM 题目地址: UVALive - 3263 That Nice Euler Circuit 题意: 给 ...
- [project euler] program 4
上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出 ...
- The Euler function[HDU2824]
The Euler functionTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- Euler Tour Tree与dynamic connectivity
Euler Tour Tree最大的优点就是可以方便的维护子树信息,这点LCT是做不到的.为什么要维护子树信息呢..?我们可以用来做fully dynamic connectivity(online) ...
- 乱码电路(Garbled circuits)
乱码电路(Garbled circuits)是Andrew Yao教授在上世纪80年代发明的一种很聪明的技术.它可以让两个人针对某个算式来计算答案,而不需要知道他们在计算式所输入的数字. 举个例子说, ...
- nyoj998(euler)
题意:题意:给出n和m,求满足条件gcd(x, n)>=m的x的gcd(x, n)的和,其中1<=x<=n,1<= n, m <= 1e9:思路:此题和nyoj1007差 ...
- nyoj1007(euler 函数)
euler(x)公式能计算小于等于x的并且和x互质的数的个数: 我们再看一下如何求小于等于n的和n互质的数的和, 我们用sum(n)表示: 若gcd(x, a)=1,则有gcd(x, x-a)=1: ...
- [家里蹲大学数学杂志]第237期Euler公式的美
1 Euler 公式 $e^{i\pi}+1=0$ (1) 它把 a. $e:$ 自然对数的底 $\approx 2. 718281828459$ (数分) b. $i$: 虚数单位 $=\sqr ...
随机推荐
- Android应用程序用真机调试步骤
仅供参考: 1.开启调试模式 2.安装 Adb.exe 将platform-tools文件夹里面adb.exe AdbWinApi.dll AdbWinUsbApi.dll拷贝到tools ...
- APPIUM API整理(python)---其他辅助类
App运行类 1.current_activity current_activity(self): 用法: print(driver.current_activity()) Retrieves the ...
- SpringBoot ControllerAdvice
在Spring3.2中新增了@ControllerAdvice注解,可用于定义@ExceptionHandler @ModelAttribute @InitBinder,并应用到所有被@Request ...
- select 下拉框 设置值
function setSelectOption(objSelect, targetValue){ if(objSelect){ var options = objSelect.options; if ...
- SPFA算法 - Bellman-ford算法的进一步优化
2017-07-27 22:18:11 writer:pprp SPFA算法实质与Bellman-Ford算法的实质一样,每次都要去更新最短路径的估计值. 优化:只有那些在前一遍松弛中改变了距离点的 ...
- PAT1077. Kuchiguse (20)
#include <iostream> #include <vector> #include <sstream> using namespace std; int ...
- JavaScript全屏显示
JavaScript全屏显示 需要引入的库 https://cdn.bootcss.com/jquery/1.9.0/jquery.min.js https://cdn.bootcss.com/scr ...
- angularjs地址栏传参
1:路由定义参数 2.controller 3. 4.目标得到参数值
- Intellij IDEA 配置Subversion插件实现步骤详解
在使用Intellij的过程中,突然发现svn不起效了,在VCS–>Checkout from Version Control中也未发现Subversion这一项.如下图: 一.原因查找 经过 ...
- JSON.parse()和JSON.stringify()以及stringify()字符串格式化
1. parse用于从一个字符串中解析出json对象,如var str = '{"name":"huangxiaojian","age":& ...