Cornfields
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 4911   Accepted: 2392

Description

FJ has decided to grow his own corn hybrid in order to help the cows make the best possible milk. To that end, he's looking to build the cornfield on the flattest piece of land he can find.

FJ has, at great expense, surveyed his square farm of N x N hectares (1 <= N <= 250). Each hectare has an integer elevation (0 <= elevation <= 250) associated with it.

FJ will present your program with the elevations and a set of K (1 <= K <= 100,000) queries of the form "in this B x B submatrix, what is the maximum and minimum elevation?". The integer B (1 <= B <= N) is the size of one edge of the square cornfield and is a constant for every inquiry. Help FJ find the best place to put his cornfield.

Input

* Line 1: Three space-separated integers: N, B, and K.

* Lines 2..N+1: Each line contains N space-separated integers. Line 2 represents row 1; line 3 represents row 2, etc. The first integer on each line represents column 1; the second integer represents column 2; etc.

* Lines N+2..N+K+1: Each line contains two space-separated integers representing a query. The first integer is the top row of the query; the second integer is the left column of the query. The integers are in the range 1..N-B+1.

Output

* Lines 1..K: A single integer per line representing the difference between the max and the min in each query. 

Sample Input

5 3 1
5 1 2 6 3
1 3 5 2 7
7 2 4 6 1
9 9 8 6 5
0 6 9 3 9
1 2

Sample Output

5

Source

二维RMQ。

和一维的差不多。

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std; int val[][];
int mm[];
int dpmin[][][][];//最小值
int dpmax[][][][];//最大值 void initRMQ(int n,int m)
{
for(int i = ;i <= n;i++)
for(int j = ;j <= m;j++)
dpmin[i][j][][] = dpmax[i][j][][] = val[i][j];
for(int ii = ; ii <= mm[n]; ii++)
for(int jj = ; jj <= mm[m]; jj++)
if(ii+jj)
for(int i = ; i + (<<ii) - <= n; i++)
for(int j = ; j + (<<jj) - <= m; j++)
{
if(ii)
{
dpmin[i][j][ii][jj] = min(dpmin[i][j][ii-][jj],dpmin[i+(<<(ii-))][j][ii-][jj]);
dpmax[i][j][ii][jj] = max(dpmax[i][j][ii-][jj],dpmax[i+(<<(ii-))][j][ii-][jj]);
}
else
{
dpmin[i][j][ii][jj] = min(dpmin[i][j][ii][jj-],dpmin[i][j+(<<(jj-))][ii][jj-]);
dpmax[i][j][ii][jj] = max(dpmax[i][j][ii][jj-],dpmax[i][j+(<<(jj-))][ii][jj-]);
}
}
}
//查询矩形的最大值
int rmq1(int x1,int y1,int x2,int y2)
{
int k1 = mm[x2-x1+];
int k2 = mm[y2-y1+];
x2 = x2 - (<<k1) + ;
y2 = y2 - (<<k2) + ;
return max(max(dpmax[x1][y1][k1][k2],dpmax[x1][y2][k1][k2]),max(dpmax[x2][y1][k1][k2],dpmax[x2][y2][k1][k2]));
}
//查询矩形的最小值
int rmq2(int x1,int y1,int x2,int y2)
{
int k1 = mm[x2-x1+];
int k2 = mm[y2-y1+];
x2 = x2 - (<<k1) + ;
y2 = y2 - (<<k2) + ;
return min(min(dpmin[x1][y1][k1][k2],dpmin[x1][y2][k1][k2]),min(dpmin[x2][y1][k1][k2],dpmin[x2][y2][k1][k2]));
} int main()
{
mm[] = -;
for(int i = ;i <= ;i++)
mm[i] = ((i&(i-))==)?mm[i-]+:mm[i-];
int N,B,K;
while(scanf("%d%d%d",&N,&B,&K)==)
{
for(int i = ;i <= N;i++)
for(int j = ;j <= N;j++)
scanf("%d",&val[i][j]);
initRMQ(N,N);
int x,y;
while(K--)
{
scanf("%d%d",&x,&y);
printf("%d\n",rmq1(x,y,x+B-,y+B-)-rmq2(x,y,x+B-,y+B-));
}
}
return ;
}

POJ 2019 Cornfields (二维RMQ)的更多相关文章

  1. POJ 2019 Cornfields [二维RMQ]

    题目传送门 Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7963   Accepted: 3822 ...

  2. POJ 2019 Cornfields 二维线段树的初始化与最值查询

    模板到不行.. 连更新都没有.. .存个模板. 理解留到小结的时候再写. #include <algorithm> #include <iostream> #include & ...

  3. [poj2019]Cornfields(二维RMQ)

    题意:给你一个n*n的矩阵,让你从中圈定一个小矩阵,其大小为b*b,有q个询问,每次询问告诉你小矩阵的左上角,求小矩阵内的最大值和最小值的差. 解题关键:二维st表模板题. 预处理复杂度:$O({n^ ...

  4. [POJ 2019] Cornfields

    Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5516   Accepted: 2714 Descri ...

  5. poj2019 二维RMQ裸题

    Cornfields Time Limit: 1000MS   Memory Limit: 30000K Total Submissions:8623   Accepted: 4100 Descrip ...

  6. hdu2888 二维RMQ

    Check Corners Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  7. hduacm 2888 ----二维rmq

    http://acm.hdu.edu.cn/showproblem.php?pid=2888 模板题  直接用二维rmq 读入数据时比较坑爹  cin 会超时 #include <cstdio& ...

  8. hdu 2888 二维RMQ模板题

    Check Corners Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  9. HDU 2888 Check Corners (模板题)【二维RMQ】

    <题目链接> <转载于 >>> > 题目大意: 给出一个N*M的矩阵,并且给出该矩阵上每个点对应的值,再进行Q次询问,每次询问给出代询问子矩阵的左上顶点和右下 ...

随机推荐

  1. 多线程伪共享FalseSharing

    1. 伪共享产生: 在SMP架构的系统中,每个CPU核心都有自己的cache,当多个线程在不同的核心上,并且某线程修改了在同一个cache line中的数据时,由于cache一致性原则,其他核心cac ...

  2. kernel defconfig

    Some defconfig files are placed on below path. Only one *_defconfig can be selected. android/kernel/ ...

  3. 【Android XML】Android XML 转 Java Code 系列之 style(3)

    最近一个月把代码重构了一遍, 感觉舒服多了, 但总体开发进度没有变化.. 今天聊聊把style属性转换成Java代码的办法 先说结论: 引用系统style是无法完美的实现的, 我们如果有写成Java代 ...

  4. nfs 文件共享 服务

    需要rpc服务: [root@xujiaxuan ftp]# service rpcbind start[root@xujiaxuan ftp]# chkconfig rpcbind on 设置开机自 ...

  5. C后端设计开发 - 第3章-气功-原子锁线程协程

    正文 第3章-气功-原子锁线程协程 后记 如果有错误, 欢迎指正. 有好的补充, 和疑问欢迎交流, 一块提高. 在此谢谢大家了. 童话镇 - http://music.163.com/#/m/song ...

  6. 理解rest架构

    越来越多的人开始意识到,网站即软件,而且是一种新型的软件. 这种"互联网软件"采用客户端/服务器模式,建立在分布式体系上,通过互联网通信,具有高延时(high latency).高 ...

  7. MYSQL表中设置字段类型为TIMESTAMP时的注意事项

    在MYSQL中,TIMESTAMP类型是用来表示日期的,但是和DATETIME不同,不同点就不再这里说明了. 当我们在使用TIMESTAMP类型设置表中的字段时,我们应该要注意一点,首先我们在表中新增 ...

  8. 大小端 Big-Endian 与 Little-Endian

    应该说没做底层开发(硬件或驱动)的人很可能不会彻底理解大小端的概念,大小端不是简单的一句“大端在前”还是“小端在前”能够概括的问题.在cpu, 内存, 操作系统, 编译选项, 文件,网络传输中均有大小 ...

  9. redis使用教程

    一.redis 的安装 官方就是个坑:只说make一下即可用,确实可以用,我以为装好了,结果好多问题: 安装步骤:make =>  make test  => make install 1 ...

  10. kubernetes如何要使用用户名和密码登陆harbor以拉取docker镜像,应该如何操作?

    还好,网上有相应的CASE处理. http://www.jianshu.com/p/ffbfb44dc496 =========================== 先生成名为为regsecret的S ...