思路:这个分清楚情况就很好做了。

注意一点当A的转置等于B的时候(对角线除外),记录A的下三角(或上三角)有cnt个的数与B不同,如果cnt>1则

不需要额外的步数就可以了,否则当k==2时结果要加2,反之加1.

代码如下:

 #include <cstdio>
#include <iostream>
#define M 105
using namespace std;
int a[M][M],b[M][M],n;
bool is()
{
for(int i=;i<n;i++)
for(int j=;j<i;j++)
if(b[i][j]!=b[j][i]) return ;
return ;
}
bool ab()
{
int cnt=;
for(int i=;i<n;i++)
for(int j=;j<i;j++){
if(a[i][j]!=b[j][i]||a[j][i]!=b[i][j]) return ;
if((a[i][j]!=b[i][j]||a[j][i]!=b[j][i])&&b[i][j]!=b[j][i]) cnt++;
}
if(cnt>) return ;
return ;
}
int main()
{
int t,ca=,k;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&k);
for(int i=;i<n;i++)
for(int j=;j<n;j++)
scanf("%d",&a[i][j]);
int ans=;
for(int i=;i<n;i++)
for(int j=;j<n;j++){
scanf("%d",&b[i][j]);
ans+=(a[i][j]!=b[i][j]);
}
printf("Case %d: ",++ca);
if(!ans) printf("0\n");
else if(is()) printf("-1\n");
else if(ab()){
if(k==&&n==) printf("-1\n");
else if(k==) printf("%d\n",ans+);
else printf("%d\n",ans+);
}
else printf("%d\n",ans);
}
}

UVA 12284 Digital Matrix的更多相关文章

  1. UVA 11992 - Fast Matrix Operations(段树)

    UVA 11992 - Fast Matrix Operations 题目链接 题意:给定一个矩阵,3种操作,在一个矩阵中加入值a,设置值a.查询和 思路:因为最多20列,所以全然能够当作20个线段树 ...

  2. UVA 11992 Fast Matrix Operations(线段树:区间修改)

    题目链接 2015-10-30 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=s ...

  3. UVa 442 (栈) Matrix Chain Multiplication

    题意: 给出一个矩阵表达式,计算总的乘法次数. 分析: 基本的数学知识:一个m×n的矩阵A和n×s的矩阵B,计算AB的乘法次数为m×n×s.只有A的列数和B的行数相等时,两个矩阵才能进行乘法运算. 表 ...

  4. UVA 11149-Power of Matrix(等比矩阵求和)

    给定一个矩阵A 要求A + A^2 + A^3 +…. A^k: 对于到n的等比矩阵求和 如果n是偶数:  如果n是奇数:  #include<stdio.h> #include<s ...

  5. uva 11992 Fast Matrix Operations 线段树模板

    注意 setsetset 和 addvaddvaddv 标记的下传. 我们可以控制懒惰标记的优先级. 由于 setsetset 操作的优先级高于 addaddadd 操作,当下传 setsetset ...

  6. 【uva 11082】Matrix Decompressing(图论--网络流最大流 Dinic+拆点二分图匹配)

    题意:有一个N行M列的正整数矩阵,输入N个前1~N行所有元素之和,以及M个前1~M列所有元素之和.要求找一个满足这些条件,并且矩阵中的元素都是1~20之间的正整数的矩阵.输入保证有解,而且1≤N,M≤ ...

  7. 线段树(多维+双成段更新) UVA 11992 Fast Matrix Operations

    题目传送门 题意:训练指南P207 分析:因为矩阵不超过20行,所以可以建20条线段的线段树,支持两个区间更新以及区间查询. #include <bits/stdc++.h> using ...

  8. UVA 11992 Fast Matrix Operations (二维线段树)

    解法:因为至多20行,所以至多建20棵线段树,每行建一个.具体实现如下,有些复杂,慢慢看吧. #include <iostream> #include <cstdio> #in ...

  9. uva 12284 直接判断

    思路:见代码 #include<iostream> #include<cstring> #include<cstdio> #include<algorithm ...

随机推荐

  1. hdu 2962 Trucking (二分+最短路Spfa)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2962 Trucking Time Limit: 20000/10000 MS (Java/Others ...

  2. 自定义ToolBar

    一.Toolbar的简介 Toolbar 是 android 5.0 引入的一个新控件,Toolbar出现之前,我们很多时候都是使用ActionBar以及ActionActivity实现顶部导航栏的, ...

  3. Apache的Commons Lang和BeanUtils

    1.字符串的空判断 //isEmpty System.out.println(StringUtils.isEmpty(null));      // true System.out.println(S ...

  4. STM32接口FSMC/FMC难点详解

    STM32接口FSMC/FMC难点详解 转载   http://blog.sina.com.cn/s/blog_808bca130102x94k.html STM32F767的FMC将外部存储器划分为 ...

  5. devm_xxx机制

    前言 devm是内核提供的基础机制,用于方便驱动开发者所分配资源的自动回收.参考内核文档devres.txt.总的来说,就是驱动开发者只需要调用这类接口分配期望的资源,不用关心释放问题.这些资源的释放 ...

  6. make command explaination 編譯命令解釋

    Creating .config file make ARCH=arm CROSS_COMPILE=arm-none-eabi- stm32_defconfig 以上命令是 將變數 ARCH=arm, ...

  7. 64_g4

    gnatcoll-2014-10.fc26.x86_64.rpm 28-Feb-2017 17:44 1738266 gnatcoll-devel-2014-10.fc26.i686.rpm 28-F ...

  8. 调用start()与run()的区别

    1.调用start()方法: 通知“线程规划器”当前线程已经准备就绪,等待调用线程对象的run()方法.这个过程就是让系统安排一个时间来调用Thread中的run()方法,使线程得到运行,启动线程,具 ...

  9. canvas写的地铁地图

    更新: 18-9-21:填了个坑,更新了canvas绘制过程. 根据的是百度提供的坐标,canvas的坐标是大的坐标在后面,所以跟实际生活方向相反. 所以canvas里的北方在下方,实际生活中北方在上 ...

  10. Mysql SQL 优化

    1. 查询缓存 多数MySQL服务器都开启了查询缓存,相同的查询被执行多次,查询结果会被放到一个缓存中,这样,后续的相同的查询就不用操作表而直接访问缓存结果了. // 查询缓存不开启 $r = mys ...