四、MapReduce 基础
是一个并行计算框架(计算的数据源比较广泛-HDFS、RDBMS、NoSQL),Hadoop的 MR模块充分利用了HDFS中所有数据节点(datanode)所在机器的内存、CUP以及少量磁盘完成对大数据集的分布式计算。MapReduce将计算分为两个阶段:
- 通过将一个大的计算任务分割成若干个小任务(计算目标数据集的分割),每一个小任务会分配给所有的计算节点(datanode所在物理机器)完成对局部数据的归类和分析,我们通常把该阶段定义为Map阶段,在Map阶段结束后会在本地系统磁盘存储计算的临时结果;
- 当Map阶段所有节点完成对局部数据的归类分析后,MR框架会启动Reduce任务完成对Map阶段的局部计算临时结果汇总,把以上阶段成为Reduce阶段。
I、计算流程
II、YARN环境搭建
配置文件
[root@CentOS ~]# vi /usr/hadoop-2.6.0/etc/hadoop/yarn-site.xml
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<!--Resource Manager-->
<property>
<name>yarn.resourcemanager.hostname</name>
<value>CentOS</value>
</property>
[root@CentOS ~]# mv /usr/hadoop-2.6.0/etc/hadoop/mapred-site.xml.template /usr/hadoop-2.6.0/etc/hadoop/mapred-site.xml
[root@CentOS ~]# vi /usr/hadoop-2.6.0/etc/hadoop/mapred-site.xml
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
启动计算服务
[root@CentOS ~]# start-yarn.sh
[root@CentOS ~]# jps
1584 SecondaryNameNode
1364 NameNode
1446 DataNode
5229 Jps
III、HelloWorld of MapReduce 编程
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>2.6.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-jobclient</artifactId>
<version>2.6.0</version>
</dependency>
IpMapper
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
/**
* @program: hadoop_01
* @description:
* @author: luoht
* @create: 2019-01-04 16:08
**/
public class IpMapper extends Mapper<LongWritable,Text,Text,IntWritable>{
/**
*192.168.0.12 1 001 click 5000 2019-01-04 14:44:00
* @param key :输入文本行字节偏移量
* @param value:输入文本行
* @param context
* @throws IOException
* @throws InterruptedException
*/
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] tokens = value.toString().split("");
String ip = tokens[0];
context.write(new Text(ip),new IntWritable(1));
}
}
IpReducer
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
/**
* @program: hadoop_01
* @description:
* @author: luoht
* @create: 2019-01-04 16:13
**/
public class IpReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
/**
*
* @param key :ip
* @param values: Int[]{1,1,1,..}
* @param context
* @throws IOException
* @throws InterruptedException
*/
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int total = 0;
for (IntWritable value : values) {
total+=value.get();
}
context.write(key,new IntWritable(total));
}
}
封装job
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
/**
* @program: hadoop_01
* @description:
* @author: luoht
* @create: 2019-01-04 16:15
**/
public class CustomJobSubmiter extends Configured implements Tool {
@Override
public int run(String[] strings) throws Exception {
/*1. 封装job 对象*/
Configuration conf=getConf();
Job job = Job.getInstance(conf);
/*2. 设置数据读入和写出的格式*/
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
/*3. 设置处理数据的路径*/
Path dst = new Path("/tt/test");
TextOutputFormat.setOutputPath(job,dst);
/*4. 设置数据计算逻辑*/
Path src=new Path("/tt/access");
TextInputFormat.addInputPath(job,src);
Path dst=new Path("/tt/result");
TextOutputFormat.setOutputPath(job,dst);
/*5. 设置Mapper和Reducer输出泛型*/
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
/*6. 提交任务*/
job.submit();
return 0;
}
public static void main(String[] args) throws Exception {
ToolRunner.run(new CustomJobSubmiter(),args);
}
}
四、MapReduce 基础的更多相关文章
- Hadoop 综合揭秘——MapReduce 基础编程(介绍 Combine、Partitioner、WritableComparable、WritableComparator 使用方式)
前言 本文主要介绍 MapReduce 的原理及开发,讲解如何利用 Combine.Partitioner.WritableComparator等组件对数据进行排序筛选聚合分组的功能.由于文章是针对开 ...
- 7,MapReduce基础
目录 MapReduce基础 一.关于MapReduce 二.MapReduce的优缺点 三.MapReduce的执行流程 四.编写MapReduce程序 五.MapReduce的主要执行流程 Map ...
- [Hadoop in Action] 第4章 编写MapReduce基础程序
基于hadoop的专利数据处理示例 MapReduce程序框架 用于计数统计的MapReduce基础程序 支持用脚本语言编写MapReduce程序的hadoop流式API 用于提升性能的Combine ...
- Android Studio系列教程四--Gradle基础
Android Studio系列教程四--Gradle基础 2014 年 12 月 18 日 DevTools 本文为个人原创,欢迎转载,但请务必在明显位置注明出处!http://stormzhang ...
- php四种基础排序算法的运行时间比较
/** * php四种基础排序算法的运行时间比较 * @authors Jesse (jesse152@163.com) * @date 2016-08-11 07:12:14 */ //冒泡排序法 ...
- SQL Server 2008空间数据应用系列四:基础空间对象与函数应用
原文:SQL Server 2008空间数据应用系列四:基础空间对象与函数应用 友情提示,您阅读本篇博文的先决条件如下: 1.本文示例基于Microsoft SQL Server 2008 R2调测. ...
- 初识webpack——webpack四个基础概念
前面的话 webpack是当下最热门的前端资源模块化管理和打包工具.它可以将许多松散的模块按照依赖和规则打包成符合生产环境部署的前端资源.当webpack处理应用程序时,它会递归地构建一个依赖关系图表 ...
- 二十四. Python基础(24)--封装
二十四. Python基础(24)--封装 ● 知识结构 ● 类属性和__slots__属性 class Student(object): grade = 3 # 也可以写在__slots ...
- 十四. Python基础(14)--递归
十四. Python基础(14)--递归 1 ● 递归(recursion) 概念: recursive functions-functions that call themselves either ...
- 四. Python基础(4)--语法
四. Python基础(4)--语法 1 ● 比较几种实现循环的代码 i = 1 sum = 0 while i <= 10: # 循环10-1+1=10次 sum += i i ...
随机推荐
- 第1章 初识CSS3
什么是CSS3? CSS3是CSS2的升级版本,3只是版本号,它在CSS2.1的基础上增加了很多强大的新功能. 目前主流浏览器chrome.safari.firefox.opera.甚至360都已经支 ...
- 学习stylus笔记
最近在研究v-cli3.0,发现了一种新的预处理器,于是花了一些时间去学习下. 学习网站 基本上这个网站上,讲的已经很详情.我下面把我在学习之中的笔记和觉得自己用的多方法贴出来. 1.缩排 使用缩排和 ...
- java 从Excel 输出和输入
本文实现了使用java 从数据库中获得对象,并存入集合中, 然后输出到Excel,并设置样式 package com.webwork; import java.io.File; import java ...
- js-js和HTML的两种结合方式
第一种: - 使用一个标签 <script type="text/javascript"> js代码; </script> 第二种: - 使用script标 ...
- JSON对象的两个方法
JSON对象有两个方法,stringify()和parse(). 最简单的方法,这两个方法分别用于吧JavaScript对象序列化为JSON字符串和把JSON字符串解析为原生JavaScript值. ...
- QQ 聊天机器人小薇发布!
简介 XiaoV(小薇)是一个用 Java 写的 QQ 聊天机器人 Web 服务,可以用于社群互动: 监听多个 QQ 群消息,发现有"感兴趣"的内容时通过图灵机器人进行智能回复 监 ...
- How to use Log4cplus
Introduction Log4cplus is derived by the popular Log4j written in java.<br>This tutorial show ...
- 应该是很简单的事,关于SQL2005的视图浏览不排序问题
http://bbs.csdn.net/topics/390667337?page=1
- C#性能优化实践(转载)
原文地址http://www.infoq.com/cn/articles/C-sharp-performance-optimization?utm_source=infoq&utm_mediu ...
- 【Leetcode】【Medium】Construct Binary Tree from Inorder and Postorder Traversal
Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume that ...