题目描述

求满足 $1\le a_i\le n\ ,\ 1\le a_{i+1}-a_i\le m$ 的序列 $a_1...a_k$ 的个数模 $p$ 的值。

输入

只有一行用空格隔开的四个数:N、K、M、P。对P的说明参见后面“输出格式”中对P的解释。
输入保证20%的数据M,N,K,P≤20000,保证100%的数据M,K,P≤109,N≤1018 。

输出

仅包含一个数,表示这K天的股价的可能种数对于P的模值。

样例输入

7 3 2 997

样例输出

16


题解

数学

设第 $i$ 天与第 $i+1$ 天的差为 $a_i$,那么显然答案为:

$\sum\limits_{a_1=1}^m\sum\limits_{a_2=1}^m...\sum\limits_{a_{k-1}=1}^m(n-a_1-a_2-...-a_{k-1})$

考虑这个式子是什么:

由于每个数有 $m$ 种取值,因此相当于有 $m^{k-1}$ 次加和, $n$ 的那一部分答案为 $n·m^{k-1}$ 。

思考后面的部分$\sum\limits_{a_1=1}^m\sum\limits_{a_2=1}^m...\sum\limits_{a_{k-1}=1}^m(a_1+a_2+...+a_{k-1})$,考虑每个数的贡献:该数每一个取值对应着 $m^{k-2}$ 次加和,所以每个数的贡献为 $m^{k-2}·\sum\limits_{i=1}^mi=\frac{(m+1)m^{k-1}}2$,因此总和为 $\frac{(k-1)(m+1)m^{k-1}}2$。

最终答案即为 $n·m^{k-1}-\frac{(k-1)(m+1)m^{k-1}}2=\frac{m^{k-1}(2n-(k-1)(m+1))}2$,使用快速幂计算即可。

注意这个除2比较难以处理,考虑将模数*2变为偶数,那么原答案的奇偶性不变,可以直接除2。

千万要注意取模的问题!

#include <cstdio>
typedef long long ll;
ll n , k , m , p;
ll pow(ll x , ll y)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = ans * x % p;
x = x * x % p , y >>= 1;
}
return ans;
}
int main()
{
scanf("%lld%lld%lld%lld" , &n , &k , &m , &p) , p <<= 1;
printf("%lld\n" , (pow(m , k - 1) * (2 * n % p - (m + 1) * (k - 1) % p) / 2 % p + p) % (p >> 1));
return 0;
}

【bzoj3142】[Hnoi2013]数列 数学的更多相关文章

  1. [BZOJ3142][HNOI2013]数列(组合数学)

    3142: [Hnoi2013]数列 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1721  Solved: 854[Submit][Status][ ...

  2. BZOJ3142 [Hnoi2013]数列

    Description 小 T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察 到:除第一天外每天的股价都 ...

  3. bzoj千题计划293:bzoj3142: [Hnoi2013]数列

    http://www.lydsy.com/JudgeOnline/problem.php?id=3142 如果已知数列的差分数列a[1]~a[k-1] 那么这种差分方式对答案的贡献为 N-Σ a[i] ...

  4. BZOJ3142 HNOI2013数列(组合数学)

    考虑差分序列.每个差分序列的贡献是n-差分序列的和,即枚举首项.将式子拆开即可得到n*mk-1-Σi*cnt(i),cnt(i)为i在所有差分序列中的出现次数之和.显然每一个数出现次数是相同的,所以c ...

  5. BZOJ3142 [Hnoi2013]数列 【组合数学】

    题目链接 BZOJ3142 题解 题意:选一个正整数和\(K - 1\)个\([1,M]\)中的数,使得总和小于等于\(N\),求方案数模\(P\) 题目中\(K(M - 1) < N\)的限制 ...

  6. [BZOJ3142][HNOI2013]数列(组合)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3142 分析: 考虑差值序列a1,a2,...,ak-1 那么对于一个确定的差值序列,对 ...

  7. bzoj3142[Hnoi2013]数列 组合

    Description 小 T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察 到:除第一天外每天的股价都 ...

  8. 【BZOJ3142】[HNOI2013]数列(组合计数)

    [BZOJ3142][HNOI2013]数列(组合计数) 题面 BZOJ 洛谷 题解 唯一考虑的就是把一段值给分配给\(k-1\)天,假设这\(k-1\)天分配好了,第\(i\)天是\(a_i\),假 ...

  9. 【BZOJ3142】[HNOI2013]数列

    [BZOJ3142][HNOI2013]数列 题面 洛谷 bzoj 题解 设第\(i\)天的股价为\(a_i\),记差分数组\(c_i=a_{i+1}-a_i\) 则 \[ Ans=\sum_{c_1 ...

随机推荐

  1. python字符串的方法介绍

    博文取自鱼C论坛文章: http://bbs.fishc.com/forum.php?mod=viewthread&tid=38992&extra=page%3D1%26filter% ...

  2. JavaScript---设计模式之职责链模式

    概念 职责链模式是使多个对象都有机会处理请求,从而避免请求的发送者和接受者之间的耦合关系.将这个对象连成一条链,并沿着这条链传递该请求,直到有一个对象处理他为止. 链中收到请求的对象要么亲自处理它,要 ...

  3. [Jmeter]jmeter之BeanShell Sampler测试应用

    前言: 在做接口测试的时候,有些接口做了签名校验,而签名是根据某算法进行加密,这时候,简单的接口测试工具无法完成该工作,所以想到了Jmeter,他是java编写,有强大的扩展性,足矣完成我们需要的操作 ...

  4. YARN 与Maprd 配置

    <!-- yarn 配置 --> <!-- yarn-sit.xml --> <property> <name>yarn.resourcemanager ...

  5. 「专题训练」Boredom(CodeForces Round #260 Div.1 A)

    题意(Codeforces-455A) 给你\(n\)个数,你每次可以选择删除去一个数\(x\)获得\(x\)分,但是所有为\(x+1\)和\(x-1\)的数都得删去.问最大获得分数. 分析 这是一条 ...

  6. 分享一个 UiPath Studio 相关的公众号

    RPA 和 UiPath 方面的资料比较少,因此我们自己创建了一个公众号,专门用于传播 UiPath 相关的知识. 会定期发布 UiPath 学习相关的信息.是目前难得的 UiPath 中文资源. 公 ...

  7. 微信小程序—day04

    元素水平+垂直居中 昨天的用户页的用户头像,是根据已知的像素大小,设置固定的值,达到居中的效果. 今日切换机型进行适配,发现对不同尺寸大小的屏幕不匹配.所以对wxss进行修改,真正达到水平+垂直居中. ...

  8. 【cover-view、cover-image】 覆盖组件说明

    cover-view.cover-image 这两类覆盖组件用于显示在一些特殊组件上方(map.video.canvas.camera.live-player.live-pusher). 这类组件一般 ...

  9. 【RL系列】Multi-Armed Bandit笔记补充(一)

    在此之前,请先阅读上一篇文章:[RL系列]Multi-Armed Bandit笔记 本篇的主题就如标题所示,只是上一篇文章的补充,主要关注两道来自于Reinforcement Learning: An ...

  10. mybatis 枚举类型使用

    一.首先定义接口,提供获取数据库存取的值得方法,如下: public interface BaseEnum { int getCode(); } 二.定义mybatis的typeHandler扩展类, ...