[洛谷P3793]由乃救爷爷
题目大意:有$n(n\leqslant2\times10^7)$个数,$m(m\leqslant2\times10^7)$个询问,每次询问问区间$[l,r]$中的最大值。保证数据随机
题解:分块,处理出每个元素块中前缀最大值和后缀最大值,并且处理出整块的区间最大值(用$ST$表),然后似乎就可以$O(1)$求区间最大值啦!
然而发现若$l,r$在同一块中就会出锅,那就直接暴力查询(数据随机)
卡点:无
C++ Code:
#include <cstdio>
#include <cstring>
#include <algorithm> namespace GenHelper
{
unsigned z1,z2,z3,z4,b;
unsigned rand_()
{
b=((z1<<6)^z1)>>13;
z1=((z1&4294967294U)<<18)^b;
b=((z2<<2)^z2)>>27;
z2=((z2&4294967288U)<<2)^b;
b=((z3<<13)^z3)>>21;
z3=((z3&4294967280U)<<7)^b;
b=((z4<<3)^z4)>>12;
z4=((z4&4294967168U)<<13)^b;
return (z1^z2^z3^z4);
}
}
unsigned RAND;
void srand(unsigned x)
{using namespace GenHelper;
z1=x; z2=(~x)^0x233333333U; z3=x^0x1234598766U; z4=(~x)+51;}
int read()
{
using namespace GenHelper;
static int a, b;
a=rand_()&32767;
b=rand_()&32767;
return a << 15 | b;
} #define maxn 20000010
#define M 13
const int BSZ = 4480, BNUM = maxn / BSZ + 10;
int n, m, s[maxn];
unsigned long long ans; int Lmax[maxn], Rmax[maxn];
int L[BNUM], R[BNUM], bel[maxn]; int ST[M + 1][BNUM], LG[BNUM];
inline int query(int l, int r) {
if (l >= r) return 0;
static int t; t = LG[r - l];
return std::max(ST[t][l], ST[t][r - (1 << t)]);
} int main() {
scanf("%d%d%u", &n, &m, &RAND); srand(RAND);
for (int i = 1; i <= n; ++i) {
s[i] = read();
bel[i] = i / BSZ + 1;
} const int B = bel[n];
LG[0] = -1; for (int i = 1; i <= B; ++i) LG[i] = LG[i >> 1] + 1;
for (int i = 1; i <= B; ++i) {
L[i] = (i - 1) * BSZ;
R[i] = L[i] + BSZ - 1;
}
L[1] = 1, R[B] = n;
for (int i = 1, now = 1, last = 0; i <= n; ++i) {
Lmax[i] = last = std::max(s[i], last);
if (i >= R[now]) ST[0][now] = Lmax[i], last = 0, ++now;
}
for (int i = n, now = B, last = 0; i; --i) {
Rmax[i] = last = std::max(s[i], last);
if (i <= L[now]) last = 0, --now;
}
for (int i = 1, pw = 1; i <= M; ++i, pw <<= 1) {
for (int j = 1; j <= B; ++j) ST[i][j] = std::max(ST[i - 1][j], ST[i - 1][std::min(j + pw, B)]);
} while (m --> 0) {
int l = read() % n + 1, r = read() % n + 1;
if (l > r) std::swap(l, r);
const int lb = bel[l], rb = bel[r];
if (lb != rb) {
ans += std::max(std::max(Rmax[l], Lmax[r]), query(lb + 1, rb));
} else {
static int res; res = 0;
for (int i = l; i <= r; ++i) res = std::max(res, s[i]);
ans += res;
}
}
printf("%llu\n", ans);
return 0;
}
[洛谷P3793]由乃救爷爷的更多相关文章
- 洛谷 P2279 03湖南 消防局的设立
2016-05-30 16:18:17 题目链接: 洛谷 P2279 03湖南 消防局的设立 题目大意: 给定一棵树,选定一个节点的集合,使得所有点都与集合中的点的距离在2以内 解法1: 贪心 首先D ...
- 【洛谷P2584】【ZJOI2006】GameZ游戏排名系统题解
[洛谷P2584][ZJOI2006]GameZ游戏排名系统题解 题目链接 题意: GameZ为他们最新推出的游戏开通了一个网站.世界各地的玩家都可以将自己的游戏得分上传到网站上.这样就可以看到自己在 ...
- [洛谷日报第62期]Splay简易教程 (转载)
本文发布于洛谷日报,特约作者:tiger0132 原地址 分割线下为copy的内容 [洛谷日报第62期]Splay简易教程 洛谷科技 18-10-0223:31 简介 二叉排序树(Binary Sor ...
- 洛谷 P1396 营救
题目链接 https://www.luogu.org/problemnew/show/P1396 题目描述 “咚咚咚……”“查水表!”原来是查水表来了,现在哪里找这么热心上门的查表员啊!小明感动的热泪 ...
- BZOJ1899或洛谷2577 [ZJOI2005]午餐
BZOJ原题链接 洛谷原题链接 解决这题得先想到一个贪心:吃饭慢的先排队. 并不会证明(感觉显然 设\(f[i][j][k]\)表示已经排好了前\(i\)人,第一个队伍需要花费的打饭时间为\(j\), ...
- 洛谷P3703 [SDOI2017]树点涂色(LCT,dfn序,线段树,倍增LCA)
洛谷题目传送门 闲话 这是所有LCT题目中的一个异类. 之所以认为是LCT题目,是因为本题思路的瓶颈就在于如何去维护同颜色的点的集合. 只不过做着做着,感觉后来的思路(dfn序,线段树,LCA)似乎要 ...
- 洛谷 P3391 【模板】文艺平衡树(Splay)
题目背景 这是一道经典的Splay模板题——文艺平衡树. 题目描述 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转一个区间,例如原有序序列是5 4 3 2 1, ...
- 【题解】洛谷P1351 [NOIP2014TG] 联合权值(树形结构+DFS)
题目来源:洛谷P1351 思路 由题意可得图为一棵树 在一棵树上距离为2的两个点有两种情况 当前点与其爷爷 当前点的两个儿子 当情况为当前点与其爷爷时比较好操作 只需要在传递时不仅传递父亲 还传递爷爷 ...
- 洛谷1736(二维dp+预处理)
洛谷1387的进阶版,但很像. 1387要求是“全为1的正方形”,取dp[i][j] = min(dp[i-1][j-1], min(dp[i-1][j], dp[i][j-1]))吧?这个有“只有对 ...
随机推荐
- DMA是什么意思
DMA是让硬盘不用通过CPU来控制读写 它的意思是直接存储器存取,是一种快速传送数据的机制,DMA技术的重要性在于,利用它进行数据存取时不需要CPU进行干预,可提高系统执行应用程序的效率.利用DMA传 ...
- ReadyAPI教程和示例(一)
声明:如果你想转载,请标明本篇博客的链接,请多多尊重原创,谢谢! 本篇使用的 ReadyAPI版本是2.5.0 通过下图你可以快速浏览一下主要的ReadyAPI中SoapUI功能: 一.创建一个功 ...
- 制作一个App的完整流程是哪些
APP开发流程其实并不复杂,但是对于客户来说,.一般移动APP开发都离不开UI设计师.前端开发.后端开发.测试专员.产品经理等,由于他们的工作性质都不一样,我们且先把APP软件开发项目分为三个阶段: ...
- JMeter自学笔记2-图形界面介绍
一.写在前面的话: 上篇我们已经学会了如何安装JMeter和打开JMeter,那么这篇我们将对JMeter的图形界面做一个简单的介绍.大家只要简单的了解即可,无需死记硬背,在今后的学习和使用中慢慢熟悉 ...
- 用IDEA编写spark的WordCount
我习惯用Maven项目 所以用IDEA新建一个Maven项目 下面是pom文件 我粘上来吧 <?xml version="1.0" encoding="UTF-8& ...
- 韦大仙--Katalon---一款好用的selenium自动化测试插件
selenium框架是目前使用较广泛的开源自动化框架,一款好的.基于界面的录制工具对于初学者来说可以快速入门:对于老手来说可以提高开发自动化脚本的效率.我们知道Selenium IDE是一款使用较多的 ...
- 【shell 每日一练6】初始化安装Mysql并修改密码
一.简单实现mysql一键安装 参考:[第二章]MySQL数据库基于Centos7.3-部署 此脚本前提条件是防火墙,selinux都已经设置完毕: [root@web130 ~]# cat Inst ...
- ElasticSearch 2.0以后的改动导致旧的资料和书籍需要订正的部分
id原先是可以通过path指定字段的 "thread": { "_id" : { "path" : "thread_id" ...
- HDU 2489 Minimal Ratio Tree(暴力+最小生成树)(2008 Asia Regional Beijing)
Description For a tree, which nodes and edges are all weighted, the ratio of it is calculated accord ...
- Red and Black(DFS深搜实现)
Description There is a rectangular room, covered with square tiles. Each tile is colored either red ...