目大意:有$n(n\leqslant2\times10^7)$个数,$m(m\leqslant2\times10^7)$个询问,每次询问问区间$[l,r]$中的最大值。保证数据随机

题解:分块,处理出每个元素块中前缀最大值和后缀最大值,并且处理出整块的区间最大值(用$ST$表),然后似乎就可以$O(1)$求区间最大值啦!

然而发现若$l,r$在同一块中就会出锅,那就直接暴力查询(数据随机)

卡点:

C++ Code:

#include <cstdio>
#include <cstring>
#include <algorithm> namespace GenHelper
{
unsigned z1,z2,z3,z4,b;
unsigned rand_()
{
b=((z1<<6)^z1)>>13;
z1=((z1&4294967294U)<<18)^b;
b=((z2<<2)^z2)>>27;
z2=((z2&4294967288U)<<2)^b;
b=((z3<<13)^z3)>>21;
z3=((z3&4294967280U)<<7)^b;
b=((z4<<3)^z4)>>12;
z4=((z4&4294967168U)<<13)^b;
return (z1^z2^z3^z4);
}
}
unsigned RAND;
void srand(unsigned x)
{using namespace GenHelper;
z1=x; z2=(~x)^0x233333333U; z3=x^0x1234598766U; z4=(~x)+51;}
int read()
{
using namespace GenHelper;
static int a, b;
a=rand_()&32767;
b=rand_()&32767;
return a << 15 | b;
} #define maxn 20000010
#define M 13
const int BSZ = 4480, BNUM = maxn / BSZ + 10;
int n, m, s[maxn];
unsigned long long ans; int Lmax[maxn], Rmax[maxn];
int L[BNUM], R[BNUM], bel[maxn]; int ST[M + 1][BNUM], LG[BNUM];
inline int query(int l, int r) {
if (l >= r) return 0;
static int t; t = LG[r - l];
return std::max(ST[t][l], ST[t][r - (1 << t)]);
} int main() {
scanf("%d%d%u", &n, &m, &RAND); srand(RAND);
for (int i = 1; i <= n; ++i) {
s[i] = read();
bel[i] = i / BSZ + 1;
} const int B = bel[n];
LG[0] = -1; for (int i = 1; i <= B; ++i) LG[i] = LG[i >> 1] + 1;
for (int i = 1; i <= B; ++i) {
L[i] = (i - 1) * BSZ;
R[i] = L[i] + BSZ - 1;
}
L[1] = 1, R[B] = n;
for (int i = 1, now = 1, last = 0; i <= n; ++i) {
Lmax[i] = last = std::max(s[i], last);
if (i >= R[now]) ST[0][now] = Lmax[i], last = 0, ++now;
}
for (int i = n, now = B, last = 0; i; --i) {
Rmax[i] = last = std::max(s[i], last);
if (i <= L[now]) last = 0, --now;
}
for (int i = 1, pw = 1; i <= M; ++i, pw <<= 1) {
for (int j = 1; j <= B; ++j) ST[i][j] = std::max(ST[i - 1][j], ST[i - 1][std::min(j + pw, B)]);
} while (m --> 0) {
int l = read() % n + 1, r = read() % n + 1;
if (l > r) std::swap(l, r);
const int lb = bel[l], rb = bel[r];
if (lb != rb) {
ans += std::max(std::max(Rmax[l], Lmax[r]), query(lb + 1, rb));
} else {
static int res; res = 0;
for (int i = l; i <= r; ++i) res = std::max(res, s[i]);
ans += res;
}
}
printf("%llu\n", ans);
return 0;
}

  

[洛谷P3793]由乃救爷爷的更多相关文章

  1. 洛谷 P2279 03湖南 消防局的设立

    2016-05-30 16:18:17 题目链接: 洛谷 P2279 03湖南 消防局的设立 题目大意: 给定一棵树,选定一个节点的集合,使得所有点都与集合中的点的距离在2以内 解法1: 贪心 首先D ...

  2. 【洛谷P2584】【ZJOI2006】GameZ游戏排名系统题解

    [洛谷P2584][ZJOI2006]GameZ游戏排名系统题解 题目链接 题意: GameZ为他们最新推出的游戏开通了一个网站.世界各地的玩家都可以将自己的游戏得分上传到网站上.这样就可以看到自己在 ...

  3. [洛谷日报第62期]Splay简易教程 (转载)

    本文发布于洛谷日报,特约作者:tiger0132 原地址 分割线下为copy的内容 [洛谷日报第62期]Splay简易教程 洛谷科技 18-10-0223:31 简介 二叉排序树(Binary Sor ...

  4. 洛谷 P1396 营救

    题目链接 https://www.luogu.org/problemnew/show/P1396 题目描述 “咚咚咚……”“查水表!”原来是查水表来了,现在哪里找这么热心上门的查表员啊!小明感动的热泪 ...

  5. BZOJ1899或洛谷2577 [ZJOI2005]午餐

    BZOJ原题链接 洛谷原题链接 解决这题得先想到一个贪心:吃饭慢的先排队. 并不会证明(感觉显然 设\(f[i][j][k]\)表示已经排好了前\(i\)人,第一个队伍需要花费的打饭时间为\(j\), ...

  6. 洛谷P3703 [SDOI2017]树点涂色(LCT,dfn序,线段树,倍增LCA)

    洛谷题目传送门 闲话 这是所有LCT题目中的一个异类. 之所以认为是LCT题目,是因为本题思路的瓶颈就在于如何去维护同颜色的点的集合. 只不过做着做着,感觉后来的思路(dfn序,线段树,LCA)似乎要 ...

  7. 洛谷 P3391 【模板】文艺平衡树(Splay)

    题目背景 这是一道经典的Splay模板题——文艺平衡树. 题目描述 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转一个区间,例如原有序序列是5 4 3 2 1, ...

  8. 【题解】洛谷P1351 [NOIP2014TG] 联合权值(树形结构+DFS)

    题目来源:洛谷P1351 思路 由题意可得图为一棵树 在一棵树上距离为2的两个点有两种情况 当前点与其爷爷 当前点的两个儿子 当情况为当前点与其爷爷时比较好操作 只需要在传递时不仅传递父亲 还传递爷爷 ...

  9. 洛谷1736(二维dp+预处理)

    洛谷1387的进阶版,但很像. 1387要求是“全为1的正方形”,取dp[i][j] = min(dp[i-1][j-1], min(dp[i-1][j], dp[i][j-1]))吧?这个有“只有对 ...

随机推荐

  1. 14、Java并发编程:CountDownLatch、CyclicBarrier和Semaphore

    Java并发编程:CountDownLatch.CyclicBarrier和Semaphore 在java 1.5中,提供了一些非常有用的辅助类来帮助我们进行并发编程,比如CountDownLatch ...

  2. MySQL高级-全局查询日志

    注意:全局查询日志不要在生成环境中启用 一.配置启用 二.编码启用

  3. 如何设置虚拟化的centos内、外网络通畅

    首先要去确定你的本机(本地物理机)是通过以太网(插网线)上网的,还是通过wifi上网的.这个很重要. 如果是通过以太网去上网,那么虚拟化出来的系统,网络配置应当选择桥接模式. 当然了,也不一定非要用桥 ...

  4. PostFix支持SMTP认证

    安装cyrus-sasl yum -y install cyrus-sasl* 启动服务,开机启动 service saslauthd start chkconfig saslauthd on 配置p ...

  5. Python 集合内置函数大全(非常全!)

    Python集合内置函数操作大全 集合(s).方法名 等价符号 方法说明 s.issubset(t) s <= t 子集测试(允许不严格意义上的子集):s 中所有的元素都是 t 的成员   s ...

  6. 一句话描述 Java 设计模式

    Java 设计模式 设计模式是对应于不同的应用目的的.   适配:将特定功能接口适配需求方   桥接:面向两个接口,无关接口的实现: 抽象化与实现化解耦,使得二者可以独立变化:例:笔与图形,笔可以画图 ...

  7. 【system.date】使用说明

    对象:system.date 说明:提供一系列针对日期类型的操作 目录: 方法 返回 说明  system.date.isDate( date_string )  [True | False]  判断 ...

  8. Y460蓝牙键盘无法连接问题解决

    mac坏了,无法启动,一直没时间去修理. 近期把大学的时候用的笔记本又翻了出来,小Y,经典的“娱乐本” Y460. Y460上之前被自己各种重装系统,反复从windows到双系统,再到linux之间来 ...

  9. Python入门(3)

    一.列表 列表是用来储存和处理多个数据的数据类型,我们可以像下面这样来创建一个列表: my_list = [1, 2, 3] 列表和数学中的集合很像,但是,列表中的数据是可以重复,并且他们是有序的,列 ...

  10. Keil sct分散加载文件

    官方说明:http://www.keil.com/support/man/docs/armlink/armlink_pge1401393372646.htm